Community Detection Based on Differential Evolution Using Social Spider Optimization
<p>Sketch map of network community detection.</p> "> Figure 2
<p>Framework of the community detection algorithm based on social spider optimization (SSO/CD) algorithm.</p> "> Figure 3
<p>Changes in the normalized mutual information (<span class="html-italic">NMI</span>) value in the LFR network with the increase of evolutionary iterations.</p> "> Figure 4
<p>Changes of accuracy value with increasing <span class="html-italic">μ</span> value in LFR network. (<b>a</b>) Changes of <span class="html-italic">NMI</span> value; (<b>b</b>) Changes of the <span class="html-italic">Q</span> value.</p> "> Figure 5
<p>Convergence times change with the increase of the number of edges. IDDE: immune discrete differential evolution algorithm; GA: Algorithm proposed by Guimerà and Amaral.</p> "> Figure 6
<p>Grab local Sina Weibo data community detection simulation. (<b>a</b>) IDDE; (<b>b</b>) SSO/CD; (<b>c</b>) DESSO/CD.</p> ">
Abstract
:1. Introduction
2. Related Work for DESSO/CD
2.1. Definition of Network Community Detection
2.2. Framework of DESSO/CD Algorithm
2.3. Fitness Functions and Community Optimization Incremental Guidelines
2.3.1. Fitness Function of Community Detection
2.3.2. Community Optimization Incremental Criteria
3. Social Spider Optimization Algorithms
3.1. Initializing the Population
3.2. Cooperative Operators
3.2.1. Female Cooperative Operator
3.2.2. Male Cooperative Operator
3.3. Mating Operator
4. Our Improvement for SSO
4.1. Improvement of Differential Evolution Cooperative Operators
4.1.1. Further Improvement by the Elites and Non-Elites
4.1.2. Random Cloud Crossover Model to Disrupt the Population
4.2. Adaptive Mating Radius
4.3. Steps of the DESSO/CD Algorithm
1. | Population size N, Probability factor PE, Maximum iterations max(t). Initializing Nf, Nm by |
2. | Formula (4): |
3. | |
4. | //where rand is a random number between [0,1] and floor (.) maps a real number to an integer |
5. | Number. |
1. | For (i = 1; i < Nf + 1; i++) |
2. | For (j = 1; j < N + 1; j++) |
3. | |
4. | End for |
5. | End for |
6. | For (k = 1; k < Nm + 1; k++) |
7. | For (j = 1; j < N + 1; j++) |
8. | |
9. | End for |
10. | End for |
1. | For (l = 1; i < N + 1; l++) |
2. | For (j = 1; j < N + 1; j++) |
3. | |
4. | // Where |
5. | End for |
6. | End for |
1. | The elite and non-elite individuals are divided according to the criterion in the population F: |
2. | For (i = 1; i < Nf + 1; i++) |
3. | Calculate Vibji,Vibbi and Vibli by Formula (8) |
4. | If () |
5. | |
6. | If (rm < PE); where rm ∈ rand(0,1),τ ∈ rand(0,1),θb and ψ are the control factor. |
7. | |
8. | Else |
9. | |
10. | End if |
11. | End if |
12. | End for |
1. | The elite and the non-elite individuals are divided according to the criterion in the population M. |
2. | For (i = 1; i < Nm + 1; i++) |
3. | Calculate Vibji by Formula (8) |
4. | If |
5. | |
6. | Find the median male individual () from M. |
7. | Else if (), where rm ∈ rand (0,1),τ ∈ rand (0,1),θb and ψ are the control factor. |
8. | |
9. | Else |
10. | |
11. | End if |
12. | End if |
13. | End for |
1. | For (i = 1; i < Nm + 1; i++) |
2. | If (Mi ∈ D) |
3. | Find Ei |
4. | If (Ei < >“”) |
5. | Form Snew using the roulette method |
6. | If (ωnews > ωwo) |
7. | Swo = Snew |
8. | End if |
9. | End if |
10. | End if |
11. | End for |
5. Experiments and Analysis
5.1. Evaluation Metrics of Accuracy for the CD Measure
5.2. Experiments on Artificial Data
5.2.1. Experiments of Iterations on LFR Networks
5.2.2. Partitioning Accuracy on LFR Networks
5.2.3. Partitioning Speed of LFR Networks
5.3. Real Network Experiment
5.3.1. Partitioning Accuracy of Real Networks
5.3.2. Novel Graphical Analysis of Real Social Network Partitioning
6. Discussion
6.1. Convergence Analysis
6.2. Comparative Analysis
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Girvan, M.; Newman, M.E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 12, 7821–7826. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 3, 75–174. [Google Scholar] [CrossRef]
- Biswas, A.; Biswas, B. Analyzing evolutionary optimization and community detection algorithms using regression line dominance. Inf. Sci. 2017, 396, 185–201. [Google Scholar] [CrossRef]
- Duan, L.; Liu, Y.; Street, W.N.; Lu, H. Utilizing advances in correlation analysis for community structure detection. Expert Syst. Appl. 2017, 84, 74–91. [Google Scholar] [CrossRef]
- Fortunato, S.; Hric, D. Community detection in networks: A user guide. Phys. Rep. 2016, 659, 1–44. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.; Li, L. New online personalized recommendation approach based on the perceived value of consumer characteristics. J. Intell. Fuzzy Syst. 2017, 33, 1953–1968. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J. An evolving Takagi-sugeno model based on aggregated trapezium clouds for anomaly detection in large datasets. J. Intell. Fuzzy Syst. 2017, 32, 2295–2308. [Google Scholar] [CrossRef]
- Li, J.; Wang, J. An extended QUALIFLEX method under probability hesitant fuzzy environment for selecting green suppliers. Int. J. Fuzzy Syst. 2017, 1–14. [Google Scholar] [CrossRef]
- Strogatz, S.H. Exploring complex networks. Nature 2001, 6825, 268. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.E.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 026113. [Google Scholar] [CrossRef] [PubMed]
- Radicchi, F.; Castellano, C.; Cecconi, F.; Loreto, V.; Parisi, D. Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA 2004, 101, 2658–2663. [Google Scholar] [CrossRef] [PubMed]
- Lancichinetti, A.; Fortunato, S.; Kertész, J. Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys. 2009, 11, 033015. [Google Scholar] [CrossRef]
- Ahn, Y.Y.; Bagrow, J.P.; Lehmann, S. Link communities reveal multiscale complexity in networks. Nature 2010, 466, 761. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Song, X.; Zhou, D.; Hino, K.; Tseng, B.L. Evolutionary spectral clustering by incorporating temporal smoothness. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, San Jose, CA, USA, 12–15 August 2007; pp. 153–162. [Google Scholar]
- Li, Y.H.; Zhan, Y.W.; Wang, X.J. A community detection algorithm based on multi-domain adaptive spectral clustering. In Proceedings of the Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China, 3–5 October 2016. [Google Scholar]
- Yang, J.; Leskovec, J. Overlapping community detection at scale: a nonnegative matrix factorization approach. In Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, Rome, Italy, 4–8 February 2013; pp. 587–596. [Google Scholar]
- Xin, Y.; Xie, Z.Q.; Yang, J. An adaptive random walk sampling method on dynamic community detection. Expert Syst. Appl. 2016, 58, 10–19. [Google Scholar] [CrossRef]
- Li, Y.H.; Zhan, Y.W.; Wang, X.J. Local Extended Label Propagation Ant Colony Optimization Overlapping Community Detection. Available online: http://kns.cnki.net/kcms/detail/51.1196.TP.20170727.2115.006.html (accessed on 27 July 2017).
- Guimerà, R.; Nunes Amaral, L.A. Functional cartography of complex metabolic networks. Nature 2005, 433, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Atay, Y.; Koc, I.; Babaoglu, I.; Kodaz, H. Community detection from biological and social networks: A comparative analysis of metaheuristic algorithms. Appl. Soft Comput. 2016, 50, 194–211. [Google Scholar] [CrossRef]
- Gong, M.; Cai, Q.; Chen, X.; Ma, L. Complex network clustering by multi-objective discrete particle swarm optimization based on decomposition. IEEE Trans. Evol. Comput. 2014, 18, 82–97. [Google Scholar] [CrossRef]
- Wen, X.; Chen, W.N.; Lin, Y.; Gu, T.; Zhang, H.; Li, Y.; Zhang, J. A maximal clique based multi-objective evolutionary algorithm for overlapping community detection. IEEE Trans. Evol. Comput. 2017, 21, 363–377. [Google Scholar]
- Zou, F.; Chen, D.; Li, S.; Lu, R.; Lin, M. Community detection in complex networks: Multi-objective discrete backtracking search optimization algorithm with decomposition. Appl. Soft Comput. 2017, 53, 285–295. [Google Scholar] [CrossRef]
- Huang, Q.; White, T.; Jia, G.; Musolesi, M.; Turan, N.; Tang, K.; Yao, X. Community detection using cooperative co-evolutionary differential evolution. In International Conference on Parallel Problem Solving from Nature; Springer: Berlin/Heidelberg, Germany, 2012; pp. 235–244. [Google Scholar]
- Tasgin, M.; Herdagdelen, A.; Bingol, H. Community detection in complex networks using genetic algorithms. arXiv, 2007; arXiv:0711.0491. [Google Scholar]
- Shang, R.; Bai, J.; Jiao, L.; Jin, C. Community detection based on modularity and an improved genetic algorithm. Physica A: Stat. Mech. Appl. 2013, 392, 1215–1231. [Google Scholar] [CrossRef]
- Jia, G.; Cai, Z.; Musolesi, M.; Wang, Y.; Tennant, D.A.; Weber, R.J.; He, S. Community detection in social and biological networks using differential evolution. Lect. Notes Comput. Sci. 2012, 71–85. [Google Scholar] [CrossRef]
- Fortunato, S.; Barthélemy, M. Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 2007, 104, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.E.J. Fast algorithm for detecting community structure in networks. Phys. Rev. E 2004, 69, 066133. [Google Scholar] [CrossRef] [PubMed]
- Tiomokoali, H.; Couillet, R. Performance analysis of spectral community detection in realistic graph models. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 20–25 March 2016; pp. 4548–4552. [Google Scholar]
- Good, B.H.; de Montjoye, Y.A.; Clauset, A. Performance of modularity maximization in practical contexts. Phys. Rev. E 2010, 81, 046106. [Google Scholar] [CrossRef] [PubMed]
- Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 10, 155–168. [Google Scholar] [CrossRef]
- Khadivi, A.; Rad, A.A.; Hasler, M. Community detection enhancement in networks using proper weighting and partial synchronization. In Proceedings of the IEEE International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010; pp. 3777–3780. [Google Scholar]
- Huang, J.B.; Sun, X.J.; Zou, Y. Research survey on team formation in social networks. Chin. J. Softw. 2017, 28, 1–18. [Google Scholar]
- Zhang, Y.G.; Gong, Z.H.; Chen, Q.K. Community detection complex networks using immune discrete differential evolution algorithm. Chin. Acta Autom. Sin. 2015, 41, 749–757. [Google Scholar]
- Li, B.; Li, J.; Tang, K.; Yao, X. Many-objective evolutionary algorithms: A survey. ACM Comput. Surv. 2015, 48, 1–35. [Google Scholar] [CrossRef]
- Amiri, B.; Hossain, L.; Crawford, J.W.; Wigand, R.T. Community detection in complex networks: Multi–objective enhanced firefly algorithm. Knowl. Based Syst. 2013, 46, 1–11. [Google Scholar] [CrossRef]
- De Meo, P.; Ferrara, E.; Fiumara, G.; Provetti, A. Mixing local and global information for community detection in large networks. J. Comput. Syst. Sci. 2014, 80, 72–87. [Google Scholar] [CrossRef]
- Özkiş, A.; Babalik, A. A novel metaheuristic for multi-objective optimization problems: The multi-objective vortex search algorithm. Inf. Sci. 2017, 402, 124–148. [Google Scholar] [CrossRef]
- Wang, J.; Liao, J.; Zhou, Y.; Cai, Y. Differential evolution enhanced with multi-objective sorting-based mutation operators. IEEE Trans. Cybern. 2014, 44, 2792–2805. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Deb, K.; Zhang, Q.; Kwong, S. An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 2015, 19, 694–716. [Google Scholar] [CrossRef]
- Malliaros, F.D.; Vazirgiannis, M. Clustering and community detection in directed networks: A survey. Phys. Rep. 2013, 533, 95–142. [Google Scholar] [CrossRef]
- Pizzuti, C. GA-Net: A genetic algorithm for community detection in social networks. In PPSN 2008: Parallel Problem Solving from Nature—PPSN X; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1081–1090. [Google Scholar]
- Pasta, M.; Zaidi, F. Topology of complex networks and performance limitations of community detection algorithms. IEEE Access 2016, 99, 1–20. [Google Scholar] [CrossRef]
- Yang, J.; McAuley, J.; Leskovec, J. Community detection in networks with node attributes. In Proceedings of the IEEE International Conference on Data Mining series (ICDM), Dallas, TX, USA, 7–10 December 2013; pp. 1151–1156. [Google Scholar]
- Ronhovde, P.; Nussinov, Z. Local resolution-limit-free Potts model for community detection. Phys. Rev. E 2010, 81, 046114. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, E.; Cortés, M.A.D.; Navarro, D.A.O. A swarm global optimization algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 2013, 40, 6374–6384. [Google Scholar] [CrossRef]
- James, J.Q.; Li, V.O. A social spider algorithm for global optimization. Appl. Soft Comput. 2015, 30, 614–627. [Google Scholar] [Green Version]
- Klein, C.E.; Segundo, E.H.; Mariani, V.C.; Coelho, L.D.S. Modified social-spider optimization algorithm applied to electromagnetic optimization. IEEE Trans. Magn. 2016, 53, 1–4. [Google Scholar] [CrossRef]
- Wang, Y.J.; Li, X.J.; Xiao, J. Social spider optimization with dynamic learning strategy. Chin. Control Decis. Conf. 2015, 9, 1575–1582. [Google Scholar]
- Ouadfel, S.; Taleb-Ahmed, A. Social spider optimization and flower pollination algorithm for multilevel image thresholding. Expert Syst. Appl. 2016, 55, 566–584. [Google Scholar] [CrossRef]
- Shukla, U.P.; Nanda, S.J. Parallel social spider clustering algorithm for high dimensional datasets. Eng. Appl. Artif. Intell. 2016, 56, 75–90. [Google Scholar] [CrossRef]
- Zhang, G.; He, R.; Liu, Y. An evolutionary algorithm based on cloud model. Chin. J. Comput. 2008, 31, 1082–1091. [Google Scholar] [CrossRef]
- Qu, J. A hybrid algorithm for community detection using PSO and EO. Adv. Inf. Sci. Serv. Sci. 2013, 5, 187. [Google Scholar]
- Danon, L.; Diaz-Guilera, A.; Duch, J.; Arenas, A. Comparing community structure identification. J. Stat. Mech. Theory Exp. 2005, 9, P09008. [Google Scholar] [CrossRef]
- Lancichinetti, A.; Fortunato, S.; Radicchi, F. Benchmark graphs for testing community detection algorithms. Phys. Rev. E 2008, 78, 046110. [Google Scholar] [CrossRef] [PubMed]
- Zachary, W.W. An information flow model for conflict and fission in small groups. J. Anthropol. Res. 1977, 33, 452–473. [Google Scholar] [CrossRef]
- Lusseau, D.; Newman, M.E.J. Identifying the role that animals play in their social networks. Proc. R. Soc. B Biol. Sci. 2004, 27, S477–S481. [Google Scholar] [CrossRef] [PubMed]
- Pothen, A.; Simon, H.D.; Liou, K.P. Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 1990, 11, 430–452. [Google Scholar] [CrossRef]
- Gleiser, P.M.; Danon, L. Community structure in jazz. Adv. Complex Syst. 2003, 6, 565–573. [Google Scholar] [CrossRef]
- Yang, J.; Leskovec, J. Defining and evaluating network communities based on ground-truth. In International Conference on Data Mining; IEEE Computer Society: Washington, DC, USA, 2012; pp. 1–8. [Google Scholar]
- Yibo, C. Sina Weibo Data Extraction Methods [EB/OL]. Available online: https://github.com/yibochen/weiBor (accessed on 5 July 2013).
- Cao, J.X.; Chen, G.J.; Wu, J.L. Multi-feature based opinion leader mining in social networks. Chin. Acta Electron. Sin. 2016, 44, 898–905. [Google Scholar]
- Cao, Y.; Zhou, H.; Wang, J. An approach to interval-valued intuitionistic stochastic multi-criteria decision-making using set pair analysis. Int. J. Mach. Learn. Cybern. 2016. [Google Scholar] [CrossRef]
- Ji, P.; Zhang, H.; Wang, J. Fuzzy decision-making framework for treatment selection based on the combined QUALIFLEX-TODIM method. Int. J. Syst. Sci. 2017, 45. [Google Scholar] [CrossRef]
- Li, J.; Wang, J. Multi-criteria outranking methods with hesitant probabilistic fuzzy sets. Cogn. Comput. 2017, 1–15. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Zhang, H. Multi-criteria decision-making method based on distance measure and choquet integral for linguistic Z-numbers. Cogn. Comput. 2017, 1–16. [Google Scholar] [CrossRef]
- Liang, R.; Wang, J.; Li, L. Multi-criteria group decision making method based on interdependent inputs of single valued trapezoidal neutrosophic information. Neural Comput. Appl. 2016, 1–20. [Google Scholar] [CrossRef]
Parameter | Initial Value | Description |
---|---|---|
N | 1000 | Number of nodes |
d | 10 | Average degree |
dmax | 50 | Maximum degree |
γ | −2 | Power law distribution of node scale |
b | −1 | Power law distribution of community size |
cmin | 10 | Minimum number of nodes in the community |
cmax | 50 | Number of nodes in the largest community |
on | 100 | Number of overlapping nodes in the community |
om | 4 | Number of overlapping nodes linking communities |
μ | 0–0.5 | Mixing parameter |
Name | Nodes | Edges | Communities | Description |
---|---|---|---|---|
Karate [57] | 34 | 78 | 2 | Relationships between karate club members |
Dolphins [58] | 62 | 159 | 2 | Dolphin behavior network |
Football [59] | 115 | 613 | 12 | American Football League network |
Jazz [60] | 198 | 2742 | unknown | Jazz musician network |
Amazon [61] | 334,863 | 925,872 | 75,149 | Amazon product network |
YouTube [61] | 1,134,890 | 2,987,624 | 8385 | YouTube online social network |
Networks/Algorithms | GA [19] | SSGA [20] | BADE [20] | PSO [54] | IDDE [35] | SSO/CD | DESSO/CD | |
---|---|---|---|---|---|---|---|---|
Karate | mean | 0.4067 | 0.4198 | 0.4188 | 0.4200 | 0.4198 | 0.4196 | 0.4196 |
std | 0 | 0 | 0.0018 | 0.0012 | 0.0001 | 0.0004 | 0.0004 | |
Dolphins | mean | 0.5216 | 0.5200 | 0.5129 | 0.525 | 0.5282 | 0.5178 | 0.5377 |
std | 0.0036 | 0.004 | 0.0120 | 0.0178 | 0.0189 | 0.0141 | 0.0057 | |
Football | mean | 0.5911 | 0.5277 | 0.5513 | 0.605 | 0.6046 | 0.5406 | 0.6133 |
std | 0.0062 | 0.0057 | 0.0085 | 0.0038 | 0.0042 | 0.0069 | 0.0045 | |
Jazz | mean | 0.4439 | 0.4411 | 0.4511 | 0.4431 | 0.4448 | 0.4441 | 0.4651 |
std | 0.0137 | 0.0109 | 0.0098 | 0.0074 | 0.0082 | 0.0101 | 0.0039 | |
Amazon | mean | 0.3876 | 0.3885 | 0.4041 | 0.3845 | 0.3987 | 0.3815 | 0.4153 |
std | 0.0151 | 0.0090 | 0.0103 | 0.02018 | 0.0079 | 0.0125 | 0.0081 | |
YouTube | mean | 0.4012 | 0.4279 | 0.4315 | 0.4215 | 0.42131 | 0.4110 | 0.4501 |
std | 0.0102 | 0.0081 | 0.0093 | 0.0112 | 0.0097 | 0.0104 | 0.0074 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-H.; Wang, J.-Q.; Wang, X.-J.; Zhao, Y.-L.; Lu, X.-H.; Liu, D.-L. Community Detection Based on Differential Evolution Using Social Spider Optimization. Symmetry 2017, 9, 183. https://doi.org/10.3390/sym9090183
Li Y-H, Wang J-Q, Wang X-J, Zhao Y-L, Lu X-H, Liu D-L. Community Detection Based on Differential Evolution Using Social Spider Optimization. Symmetry. 2017; 9(9):183. https://doi.org/10.3390/sym9090183
Chicago/Turabian StyleLi, You-Hong, Jian-Qiang Wang, Xue-Jun Wang, Yue-Long Zhao, Xing-Hua Lu, and Da-Long Liu. 2017. "Community Detection Based on Differential Evolution Using Social Spider Optimization" Symmetry 9, no. 9: 183. https://doi.org/10.3390/sym9090183
APA StyleLi, Y. -H., Wang, J. -Q., Wang, X. -J., Zhao, Y. -L., Lu, X. -H., & Liu, D. -L. (2017). Community Detection Based on Differential Evolution Using Social Spider Optimization. Symmetry, 9(9), 183. https://doi.org/10.3390/sym9090183