Optical Bacteria Recognition: Cross-Polarized Scattering
<p>Schematic structure of Gram+ and Gram- bacteria.</p> "> Figure 2
<p>Three-dimensional models of individual bacteria. (<b>A</b>) <span class="html-italic">Salmonella enterica</span>. (<b>B</b>) <span class="html-italic">Vibrio cholerae</span>. (<b>C</b>) <span class="html-italic">Bacillus globigii</span>. (<b>D</b>) <span class="html-italic">Bacillus subtilis</span>.</p> "> Figure 3
<p>The simulations were performed by rotating the bacteria around the <span class="html-italic">x</span> and <span class="html-italic">z</span> axes to capture all possible orientations.</p> "> Figure 4
<p>CPS maps for <span class="html-italic">Salmonella</span> and <span class="html-italic">Vibrio cholerae</span> bacteria for rotations from 0° to 170° around the x-axis (blue color corresponds to zero light intensity).</p> "> Figure 5
<p>Cross-polarized optical scattering (CPS) images for <span class="html-italic">Salmonella</span> and <span class="html-italic">Bacilli</span> (<span class="html-italic">globigii</span> and <span class="html-italic">subtilis</span>) bacteria at normal incidence. Images display concentric elliptical structures (dashed lines), whose dimensions depend on size of bacteria (blue color corresponds to zero light intensity).</p> "> Figure 6
<p>Orientations (<b>a</b>,<b>c</b>) and corresponding CPS images (<b>b</b>,<b>d</b>) for <span class="html-italic">Vibrio cholerae</span> at angles around the <span class="html-italic">x</span>-axis of 0° and 45° (blue color corresponds to zero light intensity).</p> "> Figure 7
<p>Comparison of CPS images of the four bacteria for 90° rotations around the main axes <span class="html-italic">x</span> and <span class="html-italic">z</span> (blue color corresponds to zero light intensity).</p> "> Figure 8
<p><span class="html-italic">Salmonella</span> bacterium: x-angle of 45°, z-angle of 0°. Variation in CPS images for the refractive index values of the membranes as reported in <a href="#symmetry-17-00396-t003" class="html-table">Table 3</a>: (<b>A</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>n</mi> </mrow> <mrow> <mi>c</mi> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>1.3883</mn> <mo>,</mo> <msub> <mrow> <mi>n</mi> </mrow> <mrow> <mi>m</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> </mrow> </msub> <mo>=</mo> <mn>1.43</mn> </mrow> </semantics></math>; (<b>B</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>n</mi> </mrow> <mrow> <mi>c</mi> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>1.3883</mn> <mo>,</mo> <msub> <mrow> <mi>n</mi> </mrow> <mrow> <mi>m</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> </mrow> </msub> <mo>=</mo> <mn>1.45</mn> </mrow> </semantics></math>; (<b>C</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>n</mi> </mrow> <mrow> <mi>c</mi> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>1.3935</mn> <mo>,</mo> <msub> <mrow> <mi>n</mi> </mrow> <mrow> <mi>m</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> </mrow> </msub> <mo>=</mo> <mn>1.43</mn> </mrow> </semantics></math>; and (<b>D</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>n</mi> </mrow> <mrow> <mi>c</mi> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>1.3935</mn> <mo>,</mo> <msub> <mrow> <mi>n</mi> </mrow> <mrow> <mi>m</mi> <mi>e</mi> <mi>m</mi> <mi>b</mi> </mrow> </msub> <mo>=</mo> <mn>1.45</mn> </mrow> </semantics></math>. (blue color corresponds to zero light intensity).</p> "> Figure 9
<p>16-bit CPS images (all with same orientation at z = 0°). (blue color corresponds to zero light intensity).</p> "> Figure 10
<p>(<b>A</b>) TSNe normal images and (<b>B</b>) TSNe logarithmic scale images.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria Structure
2.2. Refractive Indices
2.2.1. Nucleotide
2.2.2. Cytoplasm
2.2.3. Bacterial Membrane
Plasma and Outer Membranes
Periplasm
Peptidoglycan
2.2.4. Membrane Refractive Indices
2.3. Numerical Simulation Model
3. Results
3.1. Cross-Polarization Scattering Images Generated by Rotating the Bacteria Around the x-Axis
3.2. Cross-Polarization Scattering Images Generated by Rotating the Bacteria Around the z-Axis
3.3. CPS Images Generated by Varying the Refractive Indices Between the Calculated Maximum and Minimum Values
4. Discussion
4.1. 16-Bit Image Reduction and the t-SNE Algorithm for Reducing the Information Dimension
4.2. Application of the t-SNE Algorithm for Reducing the Information Dimension
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harding, S.E. Applications of light scattering in microbiology. Biotechnol. Appl. Biochem. 1986, 8, 489–509. [Google Scholar] [PubMed]
- Brown, C.; Tseng, D.; Larkin, P.M.K.; Realegeno, S.; Mortimer, L.; Subramonian, A.; Di Carlo, D.; Garner, O.B.; Ozcan, A. An Automated, Cost-Effective Optical System for Accelerated Anti-Microbial Susceptibility Testing (AST) Using Deep Learning. arXiv 2020, arXiv:2005.11454. [Google Scholar]
- Normani, S.; Bertolotti, P.; Bisio, F.; Magnozzi, M.; Carboni, F.F.; Filattiera, S.; Perotto, S.; Marangi, F.; Lanzani, G.; Scotognella, F.; et al. Tamm Plasmon Resonance as Optical Fingerprint of Silver/Bacteria Interaction. arXiv 2022, arXiv:2212.05287. [Google Scholar] [CrossRef]
- Kim, G.; Jo, Y.; Cho, H.; Choi, G.; Kim, B.-S.; Min, H.-S. Automated Identification of Bacteria Using Three-Dimensional Holo-graphic Imaging and Convolutional Neural Network. In Proceedings of the 2018 IEEE Photonics Conference (IPC), Reston, VA, USA, 30 September–4 October 2018; pp. 1–2. [Google Scholar]
- Madigan, M.T.; Bender, K.S.; Buckley, D.H.; Sattley, W.M.; Stahl, D.A. Brock Biology of Microorganisms; Pearson: New York, NY, USA, 2018. [Google Scholar]
- Jenkins, C.; Cooper, J.; Smith, A. Optical methods for bacterial identification: A review. J. Microbiol. Methods 2020, 178. [Google Scholar]
- Wang, A.; Garmann, F.R.; Manoharan, N.V. Tracking E. coli runs and tumbles with scattering solutions and digital holographic microscopy. Opt. Express 2016, 24, 23719–23725. [Google Scholar] [CrossRef] [PubMed]
- Vater, S.M.; Weiße, S.; Maleschlijski, S.; Lotz, C.; Koschitzki, F.; Schwartz, T.; Obst, U.; Rosenhahn, A. Swimming Behavior of Pseudomonas aeruginosa Studied by Holographic 3D Tracking. PLoS ONE 2014, 9, e87765. [Google Scholar] [CrossRef]
- Oh, J.; Ryu, J.S.; Lee, M.; Jung, J.-H.; Han, S.; Chung, H.J.; Park, Y. Three-dimensional label-free observation of individual bacteria upon antibiotic treatment using optical diffraction tomography. Biomed. Opt. Express 2020, 11, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, S.C.; Tang, T.-H.; Chen, Y.; Citartan, M.; Lakshmipriya, T. Bacterial detection: From microscope to smartphone. Biosens. Bioelectron. 2014, 60, 332–342. [Google Scholar] [CrossRef]
- Buzalewicz, I.; Kujawińska, M.; Krauze, W.; Podbielska, H. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography. PLoS ONE 2016, 11, e0150449. [Google Scholar] [CrossRef]
- Bedrossian, M.; El-Kholy, M.; Neamati, D.; Nadeau, J. A Machine Learning Algorithm for Itdentifying and Tracking Bacteria in Three Dimensions using Digital Holographic Microscopy. AIMS Biophys. 2018, 5, 36–49. [Google Scholar] [CrossRef]
- Ou, F.; McGoverin, C.; White, J.; Swift, S.; Vanholsbeeck, F. Bead-Based Flow-Cytometric Cell Counting of Live and Dead Bacteria. Methods Mol. Biol. 2019, 1968, 123–134. [Google Scholar] [PubMed]
- Galazzo, G.; van Best, N.; Benedikter, B.J.; Janssen, K.; Bervoets, L.; Driessen, C.; Oomen, M.; Lucchesi, M.; van Eijck, P.H.; Becker, H.E.F.; et al. How to Count Our Microbes? The Effect of Different Quantitative Microbiome Profiling Approaches. Front. Cell. Infect. Microbiol. 2020, 10, 403. [Google Scholar] [CrossRef] [PubMed]
- Haridas, V.; Ranjbar, S.; Vorobjev, I.A.; Goldfeld, A.E.; Barteneva, N.S. Imaging flow cytometry analysis of intracellular pathogens. Methods 2017, 112, 91–104. [Google Scholar] [CrossRef]
- Johansson, J.; Karlsson, A.; Bylund, J.; Welin, A. Phagocyte interactions with Mycobacterium tuberculosis—Simultaneous analysis of phagocytosis, phagosome maturation and intracellular replication by imaging flow cytometry. J. Immunol. Methods 2015, 427, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Stöckel, S.; Kirchhoff, J.; Heinemann, S.H. Raman spectroscopy for bacterial identification. Clin. Chem. 2015, 61, 89–98. [Google Scholar]
- He, Y.; Reed, S.; Bhunia, A.K.; Gehring, A.; Nguyen, L.-H.; Irwin, P.L. Rapid identification and classification of Campylobacter spp. using laser optical scattering technology. Food Microbiol. 2015, 47, 28–35. [Google Scholar] [CrossRef]
- Wang, P.; Sun, H.; Yang, W.; Fang, Y. Optical Methods for Label-Free Detection of Bacteria. Biosensors 2022, 12, 1171. [Google Scholar] [CrossRef]
- Romphosri, S.; Pissuwan, D.; Wattanavichean, N.; Buabthong, P.; Waritanant, T. Rapid alignment-free bacteria identification via optical scattering with LEDs and YOLOv8. Sci. Rep. 2024, 14, 20498. [Google Scholar] [CrossRef]
- Iyengar, S.N.; Dowden, B.; Ragheb, K.; Patsekin, V.; Rajwa, B.; Bae, E.; Robinson, J.P. Identifying antibiotic-resistant strains via cell sorting and elastic-light-scatter phenotyping. Appl. Microbiol. Biotechnol. 2024, 108, 406. [Google Scholar] [CrossRef]
- Weart, R.B.; Lee, A.H.; Chien, A.-C.; Haeusser, D.P.; Hill, N.S.; Levin, P.A. A metabolic sensor governing cell size in bacteria. Cell 2007, 130, 335–347. [Google Scholar] [CrossRef]
- Zuber, B.; Haenni, M.; Ribeiro, T.; Minnig, K.; Lopes, F.; Moreillon, P.; Dubochet, J. Granular Layer in the Periplasmic Space of Gram-Positive Bacteria and the Fine Structures of Enterococcus gallinarum and Streptococcus gordonii Septa Revealed by Cryo-Electron Microscopy of Vitreous Sections. J. Bacteriol. 2006, 188, 6652–6660. [Google Scholar] [CrossRef]
- Bernard, K.; Wormser, G.P. Biodefense Principles and Pathogens Edited By M. S. Bronze and R. A. Greenfield Norfolk, United Kingdom: Horizon Bioscience, 2005. 838 pp. Clin. Infect. Dis. 2006, 42, 735. [Google Scholar] [CrossRef]
- Sun, J.; Rutherford, S.T.; Silhavy, T.J.; Huang, K.C. Physical properties of the bacterial outer membrane. Nat. Rev. Microbiol. 2022, 20, 236–248. [Google Scholar] [CrossRef]
- Fàbrega, A.; Vila, J. Salmonella enterica Serovar Typhimurium Skills To Succeed in the Host: Virulence and Regulation. Clin. Microbiol. Rev. 2013, 26, 308–341. [Google Scholar] [CrossRef] [PubMed]
- Pasquina-Lemonche, L.; Burns, J.; Turner, R.D.; Kumar, S.; Tank, R.; Mullin, N.; Wilson, J.S.; Chakrabarti, B.; Bullough, P.A.; Foster, S.J.; et al. The architecture of the Gram-positive bacterial cell wall. Nature 2020, 582, 294–297. [Google Scholar] [CrossRef]
- Available online: https://bacdive.dsmz.de/strain/1077 (accessed on 2 March 2025).
- Myers, J.A.; Curtis, B.S.; Curtis, W.R. Improving accuracy of cell and chromophore concentration measurements using optical density. BMC Biophys. 2013, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Valkenburg, J.A.; Woldringh, C.L. Phase separation between nucleoid and cytoplasm in Escherichia coli as defined by immersive refractometry. J. Bacteriol. 1984, 160, 1151–1157. [Google Scholar] [CrossRef]
- Barer, R.; Joseph, S. Refractometry of Living Cells. Nature 1953, 171, 399–423. [Google Scholar] [CrossRef]
- Hale, G.M.; Querry, M.R. Optical constants of water in the 200-nm to 200-µm wavelength region. Appl. Opt. 1973, 12, 555–563. [Google Scholar] [CrossRef]
- Zhao, H.; Brown, P.H.; Schuck, P. On the Distribution of Protein Refractive Index Increments. Biophys. J. 2011, 100, 2309–2317. [Google Scholar] [CrossRef]
- Scafati, A.R.; Stornaiuolo, M.R.; Novaro, P. Physicochemical and Light Scattering Studies on Ribosome Particles. Biophys. J. 1971, 11, 370–384. [Google Scholar] [CrossRef] [PubMed]
- de Jong, H.; Casagranda, S.; Giordano, N.; Cinquemani, E.; Ropers, D.; Geiselmann, J.; Gouzé, J.-L. Mathematical modelling of microbes: Metabolism, gene expression and growth. J. R. Soc. Interface 2017, 14, 20170502. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, S.B.; Trach, S.O. Estimation of macromolecule concentrations and excluded volume effects fort the cytoplasm of Escherichia coli. J. Mol. Biol. 1991, 222, 599–620. [Google Scholar] [CrossRef]
- McGueffee, S.R.; Elcock, A.H. Diffusion, Crowding & Protein Stability in a Dynamic Molecular Model of the Bacterial Cytoplasm. PLoS Comput. Biol. 2010, 6, e1000694. [Google Scholar]
- Ross, K.F.A.; Billing, E. The Water and Solid Content of Living Bacterial Spores and Vegetative Cells as Indicated by Refractive Index Measurements. J. Gen. Microbiol. 1957, 16, 418–425. [Google Scholar] [CrossRef]
- Suhling, K.; Siegel, J.; Phillips, D.; French, P.M.; Lévêque-Fort, S.; Webb, S.E.; Davis, D.M. Imaging the Environment of Green Fluorescent Protein. Biophys. J. 2002, 83, 3589–3595. [Google Scholar] [CrossRef]
- Goodsell, D.S. Inside a living cell. Trends Biochem. Sci. 1991, 16, 203–206. [Google Scholar] [CrossRef]
- Funahara, Y.; Nikaido, H. Asymmetric Localization of Lipopolysaccharides on the Outer Membrane of Salmonella typhimurium. J. Bacteriol. 1980, 141, 1463–1465. [Google Scholar] [CrossRef] [PubMed]
- Prescott, L.M. Microbiology; Mcgraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Sihvola, A. Electromagnetic Mixing Formulas and Applications; Electromagnetic Waves Series; IET: London, UK, 1999. [Google Scholar]
- Goncharenko, A.V. Generalizations of the Bruggeman equation and a concept of shape-distributed particle composites. Phys. Rev. E 2004, 68, 041108. [Google Scholar] [CrossRef]
- Ames, G.F. Lipids of Salmonella Typhirium and Escherichia coli: Structure and Metabolism. J. Bacteriol. 1968, 95, 833–843. [Google Scholar] [CrossRef]
- Smit, J.; Kamio, Y.; Nikaido, H. Outer Membrane of Salmonella typhimurium: Chemical Analysis and Freeze-Fracture Studies with Lipopolysaccharide Mutants. J. Bacteriol. 1976, 124, 942–958. [Google Scholar] [CrossRef]
- Jones, N.C.; Osborn, M.J. Tranlocation of Phospholipids between the Outer and Inner Membranes of Salmonella typhimurium. J. Biol. Chem. 1977, 252, 7405–7412. [Google Scholar] [CrossRef]
- Rana, F.R.; Sultany, C.M.; Blazyk, J. Determination of the lipid composition of Salmonella typhimurium outer membranes by 31P NMR. J. Microbiol. Methods 1991, 14, 41–51. [Google Scholar] [CrossRef]
- Ishidate, K.; Creeger, E.S.; Zrike, J.; Deb, S.; Glauner, B.; MacAlister, T.J.; Rothfield, L.I. Isolation of Differentiated Membrane Domains from Escherichia coli and Salmonella typhimurium, including a Fraction Containing Attchments Sites between the Inner and Outer Membranes and the Murein Skeleton of the Cell Envelope. J. Biol. Chem. 1986, 261, 428–443. [Google Scholar] [CrossRef]
- Olsen, R.W.; Ballou, C.E. Acyl Phosphatidylglycerol. J. Biol. Chem. 1971, 246, 3305–3313. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.G.; Rutberg, L.; Samuelsson, B. The Chemical Composition of the Cytoplasmic Membrane of Bacillus subtilis. Eur. J. Biochem. 1967, 2, 448–453. [Google Scholar] [CrossRef]
- Kamp, J.A.F.O.D.; Redai, I.; van Deenen, L.L.M. Phospholipid Composition of Bacillus subtilis. J. Bacteriol. 1969, 99, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Nickels, J.D.; Chatterjee, S.; Mostofian, B.; Stanley, C.B.; Ohl, M.; Zolnierczuk, P.; Schulz, R.; Myles, D.A.A.; Standaert, R.F.; Elkins, J.G.; et al. Bacillus subtilis Lipid Extract, A Branched-Chain Fatty Acid Model Membrane. J. Phys. Chem. Lett. 2017, 8, 4214–4217. [Google Scholar] [CrossRef]
- Kawai, F.; Shoda, M.; Harashima, R.; Sadaie, Y.; Hara, H.; Matsumoto, K. Cardiolipin Domains in Bacillus subtilis Marburg Membranes. J. Bacteriol. 2004, 186, 1475–1483. [Google Scholar] [CrossRef]
- Clejan, S.; Krulwich, T.A.; Mondrus, K.R.; Seto-Young, D. Membrane Lipid Composition of Obligately and Facultatively Al-kalophilic Strains of Bacillus spp. J. Bacteriol. 1986, 168, 334–340. [Google Scholar] [CrossRef]
- Goldfine, H. Lipids of Prokaryotes-Structure and Distribution; Academic Press, Inc.: Cambridge, MA, USA, 1982; Volume 17, pp. 1–43. [Google Scholar]
- Paul, S.; Chaudhuri, K.; Chatterjee, A.N.; Das, J. Presence of exposed phospholipids in the outer membrane of Vibrio cholerae. J. Gen. Microbiol. 1992, 138, 755–761. [Google Scholar] [CrossRef]
- Lohia, A.; Chatterjee, A.N.; DAS, J. Lysis of Vibrio cholerae Cells: Direct Isolation of the Outer Membrane from Whole Cells by Treatment with Urea. Microbiology 1984, 130, 2027–2033. [Google Scholar] [CrossRef]
- Pautsch, A.; Schulz, G.E. Structure of the outer membrane protein A transmembrane domain. Nat. Struct. Mol. Biol. 1998, 5, 1013–1017. [Google Scholar] [CrossRef] [PubMed]
- Noureddini, H.; Teoh, B.C.; Clements, L.D. Densities of Vegetable Oils and Fatty Acids. J. Am. Oil Chem. Soc. 1992, 69, 1184–1188. [Google Scholar] [CrossRef]
- Delgado, F.F.; Cermak, N.; Hecht, V.C.; Son, S.; Li, Y.; Knudsen, S.M.; Olcum, S.; Higgins, J.M.; Chen, J.; Grover, W.H.; et al. Intracellular Water Exchange for Measuring the Dry Mass, Water Mass and Changes in Chemical Composition of Living Cells. PLoS ONE 2013, 8, e67590. [Google Scholar]
- Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 2 March 2025).
- Available online: http://www.chemspider.com/ (accessed on 2 March 2025).
- Jung, J.; Hong, S.J.; Kim, H.B.; Kim, G.; Lee, M.; Shin, S.; Lee, S.; Kim, D.J.; Lee, C.G.; Park, Y. Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography. Sci. Rep. 2018, 8, 6524. [Google Scholar] [CrossRef] [PubMed]
- Romeo, D.; Girard, A.; Rothfield, L. Reconstitution of a Functional Membrane Enzyme System in a Monomolecular Film. J. Mol. Biol. 1970, 53, 475–490. [Google Scholar] [CrossRef]
- Gul, B.; Ashraf, S.; Khan, S.; Nisar, H.; Ahmad, I. Cell refractive index: Models, insights applications and future perspectives. Photodiagn. Photodyn. Ther. 2021, 33, 102096. [Google Scholar] [CrossRef]
- Beuthan, J.; Minet, O.; Helfmann, J.; Herrig, M.; Müller, G. The spatial variation of the refractive index in biological cells. Phys. Med. Biol. 1996, 41, 369–382. [Google Scholar] [CrossRef]
- Johnsen, S.; Widder, E.A. The physical basis of transparency in biological tissue: Ultrastructure and the minimization of light scattering. J. Theor. Biol. 1999, 199, 181–198. [Google Scholar] [CrossRef]
- Neidhardt, F.C. Escherichia coli and Salmonella Typhimurium Cellular and Molecular Biology. Am. Soc. Microbiol. 1987, 1, 3–6. [Google Scholar]
- Merchante, R.; Pooley, H.M.; Karamata, D. A periplasm in Bacillus subtilis. J. Bacteriol. 1995, 177, 6176–6183. [Google Scholar] [CrossRef] [PubMed]
- Marquis, R.E. Immersion Refractometry of Isolated Bacterial Cell Walls. J. Bacteriol. 1973, 116, 1273–1279. [Google Scholar] [CrossRef] [PubMed]
- Fowles, G.R.; Lynch, D.W. Introduction to Modern Optics; Dover Publications: New York, NY, USA, 1989. [Google Scholar]
- Pepino, R.; Calabrò, F.; Fella, P.; Tari, H.; Bile, A.; Nabizada, A.; Fazio, E. Bacteria Recognition: Neural Algorithms for Recognition. submitted.
Bacterium | GRAM | Radius | Length | Internal Membrane Thickness | External Membrane Thickness | Periplasmatic Thickness | Cytoplasm Radius | Nucleotide Length | Peptidoglycan Thickness |
---|---|---|---|---|---|---|---|---|---|
Cholera | Gram- | 215 nm [23] | 1.21 µm [24] | 10 nm [5] | 10 nm [5] | 15 nm [25] | 150 nm | 0.657 µm | - |
Salmonella | Gram- | 375 nm [26] | 2.56 µm [26] | 8 nm [5] | 8 nm [5] | 15 nm [25] | 250 mm | 1.559 µm | - |
Subtilis | Gram+ | 435 nm [27] | 2.3 µm [27] | 10 nm [5] | - | 22.3 nm [24] | 300 nm | 1.267 µm | 34 nm [22] |
Globigii | Gram+ | 250 nm [28] | 2 µm [28] | 10 nm [5] | - | 22.3 nm [24] | 150 mm | 1.527 µm | 34 nm [22] |
PE | PG | CL | LPS | MP | NL | DPG | LYSOPE | LPG | RNA | DNA | DAG | DGDG | H2O | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.3 | 1.3 | 1.6 [r] | 1.1 | 1.32 | 0.9 | 1.6 | 1.1 | 1.4 | 2 | 1.4 | 0.9 | 1.5 | 1 | |
1.475 | 1.475 | 1.505 | 1.512 | 1.621 | 1.480 | 1.460 | 1.527 | 1.533 | 1.635 | 1.587 | 1.472 | 1.590 | 1.3337 |
Bacterium | External Membrane | Peptidoglycan | Periplasm | Internal Membrane | Cell Wall |
---|---|---|---|---|---|
Salmonella | 1.50–1.55 | - | 1.35–1.37 | 1.52–1.53 | 1.43–1.45 |
Vibrio cholera | 1.52–1.54 | - | 1.34–1.36 | 1.52–1.53 | 1.45–1.46 |
Bacillus subtilis | - | 1.351 | 1.35–1.36 | 1.54–1.59 | 1.38–1.39 |
Bacillus globigii | - | 1.351 | 1.35–1.36 | 1.54–1.59 | 1.38–1.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pepino, R.; Tari, H.; Bile, A.; Nabizada, A.; Fazio, E. Optical Bacteria Recognition: Cross-Polarized Scattering. Symmetry 2025, 17, 396. https://doi.org/10.3390/sym17030396
Pepino R, Tari H, Bile A, Nabizada A, Fazio E. Optical Bacteria Recognition: Cross-Polarized Scattering. Symmetry. 2025; 17(3):396. https://doi.org/10.3390/sym17030396
Chicago/Turabian StylePepino, Riccardo, Hamed Tari, Alessandro Bile, Arif Nabizada, and Eugenio Fazio. 2025. "Optical Bacteria Recognition: Cross-Polarized Scattering" Symmetry 17, no. 3: 396. https://doi.org/10.3390/sym17030396
APA StylePepino, R., Tari, H., Bile, A., Nabizada, A., & Fazio, E. (2025). Optical Bacteria Recognition: Cross-Polarized Scattering. Symmetry, 17(3), 396. https://doi.org/10.3390/sym17030396