Charging a Dimerized Quantum XY Chain
<p>Three-dimensional plot of the phase boundaries <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>1</mn> <mo>−</mo> <msup> <mi>γ</mi> <mn>2</mn> </msup> <msup> <mi>δ</mi> <mn>2</mn> </msup> </mrow> </semantics></math> (<b>left panel</b>) and <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mo>=</mo> <msup> <mi>δ</mi> <mn>2</mn> </msup> <mo>−</mo> <msup> <mi>γ</mi> <mn>2</mn> </msup> </mrow> </semantics></math> (<b>right panel</b>).</p> "> Figure 2
<p>Three-dimensional plot of the phase diagram of the model. The dashed blue and red lines are the intersections between the boundaries given by Equations (<a href="#FD4-symmetry-17-00220" class="html-disp-formula">4</a>) and (<a href="#FD5-symmetry-17-00220" class="html-disp-formula">5</a>) and the <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> plane.</p> "> Figure 3
<p>Section of the phase diagram of the model. The cyan and orange planes have equations <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1.1</mn> </mrow> </semantics></math>, respectively, while the black dotted line is given by the intersection of the aforementioned planes and it is the line where the quench takes place. The blue and red dashed lines are the QPT lines given by the intersection of the boundaries reported in Equations (<a href="#FD4-symmetry-17-00220" class="html-disp-formula">4</a>) and (<a href="#FD5-symmetry-17-00220" class="html-disp-formula">5</a>) with the <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> plane.</p> "> Figure 4
<p>Energy stored per dimer as a function of <math display="inline"><semantics> <msub> <mi>ν</mi> <mi>i</mi> </msub> </semantics></math> after a quench of the anisotropy parameter at fixed <math display="inline"><semantics> <mrow> <msub> <mi>ν</mi> <mi>f</mi> </msub> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1.1</mn> </mrow> </semantics></math> in the asymptotic regime, i.e., <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>, for <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> (green curve) and <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (black curve). In both curves, the first peak appears when <math display="inline"><semantics> <mrow> <msub> <mi>ν</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>ν</mi> <mi>f</mi> </msub> </mrow> </semantics></math> crosses the dashed red QPT line in <a href="#symmetry-17-00220-f003" class="html-fig">Figure 3</a>, while the second peak appears when it crosses the dashed blue QPT line.</p> "> Figure 5
<p>Section of the phase diagram of the model. The cyan and orange planes have equations <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>, respectively, while the black dotted line is given by the intersection of the aforementioned planes; this is the line where the quench takes place. The blue and red dashed lines are the QPT lines given by the intersection of the boundaries reported in Equations (<a href="#FD4-symmetry-17-00220" class="html-disp-formula">4</a>) and (<a href="#FD5-symmetry-17-00220" class="html-disp-formula">5</a>) with the <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> plane.</p> "> Figure 6
<p>Energy stored per dimer as a function of <math display="inline"><semantics> <msub> <mi>ν</mi> <mi>i</mi> </msub> </semantics></math> after a quench of the external field at fixed <math display="inline"><semantics> <mrow> <msub> <mi>ν</mi> <mi>f</mi> </msub> <mo>=</mo> <mn>0.41</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math> in the asymptotic regime, i.e., <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>. The two dashed red and blue lines represent the values of <math display="inline"><semantics> <msub> <mi>ν</mi> <mi>i</mi> </msub> </semantics></math> such that the charging Hamiltonian depending on <math display="inline"><semantics> <mrow> <msub> <mi>ν</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>ν</mi> <mi>f</mi> </msub> </mrow> </semantics></math> is critical.</p> "> Figure 7
<p>Section of the phase diagram of the model. The cyan and orange planes have equations <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mi>γ</mi> <mo>+</mo> <mi>δ</mi> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mi>γ</mi> <mo>−</mo> <mi>δ</mi> <mo>+</mo> <mn>2</mn> </mrow> </semantics></math>, respectively, while the black dotted line is given by the intersection of the aforementioned planes and it is the line where the quench takes place. The blue and red dashed lines are the QPT lines given by the intersection of the boundaries reported in Equations (<a href="#FD4-symmetry-17-00220" class="html-disp-formula">4</a>) and (<a href="#FD5-symmetry-17-00220" class="html-disp-formula">5</a>) with the <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mi>γ</mi> <mo>+</mo> <mi>δ</mi> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math> plane.</p> "> Figure 8
<p>Energy stored per dimer as a function of <math display="inline"><semantics> <msub> <mi>ν</mi> <mi>i</mi> </msub> </semantics></math> after a quench of both the anisotropy parameter and the external field at fixed <math display="inline"><semantics> <mrow> <msub> <mi>ν</mi> <mi>f</mi> </msub> <mo>=</mo> <mn>0.28</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math> in the asymptotic regime, i.e., <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>. The two dashed red and blue lines represent the values of <math display="inline"><semantics> <msub> <mi>ν</mi> <mi>i</mi> </msub> </semantics></math> such that the charging Hamiltonian depending on <math display="inline"><semantics> <mrow> <msub> <mi>ν</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>ν</mi> <mi>f</mi> </msub> </mrow> </semantics></math> is critical.</p> ">
Abstract
:1. Introduction
2. Model
3. Study of QPT Effects
3.1. Quench of at Given h and
3.2. Quench of h at Given and
3.3. Quench of h and at Given
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De las Cuevas, G.; Cubitt, T.S. Simple universal models capture all classical spin physics. Science 2016, 351, 1180–1183. [Google Scholar] [CrossRef]
- Auerbach, A. Interacting Electrons and Quantum Magnetism; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Wysin, G.M. Magnetism theory: Spin models. In Magnetic Excitations and Geometric Confinement; 2053–2563; IOP Publishing: Bristol, UK, 2015; pp. 1–47. [Google Scholar] [CrossRef]
- Cialone, M.; Celegato, F.; Coïsson, M.; Barrera, G.; Fiore, G.; Shvab, R.; Klement, U.; Rizzi, P.; Tiberto, P. Tailoring magnetic properties of multicomponent layered structure via current annealing in FePd thin films. Sci. Rep. 2017, 7, 16691. [Google Scholar] [CrossRef] [PubMed]
- Cialone, M.; Fernandez-Barcia, M.; Celegato, F.; Coisson, M.; Barrera, G.; Uhlemann, M.; Gebert, A.; Sort, J.; Pellicer, E.; Rizzi, P.; et al. A comparative study of the influence of the deposition technique (electrodeposition versus sputtering) on the properties of nanostructured Fe70Pd30 films. Sci. Technol. Adv. Mater. 2020, 21, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Manousakis, E. The spin-½ Heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides. Rev. Mod. Phys. 1991, 63, 1–62. [Google Scholar] [CrossRef]
- Bramwell, S.; Harris, M. Frustration in Ising-type spin models on the pyrochlore lattice. J. Phys. Condens. Matter 1998, 10, L215. [Google Scholar] [CrossRef]
- Mydosh, J.A. Spin glasses: Redux: An updated experimental/materials survey. Rep. Prog. Phys. 2015, 78, 052501. [Google Scholar] [CrossRef]
- Pan, F.; Chico, J.; Delin, A.; Bergman, A.; Bergqvist, L. Extended spin model in atomistic simulations of alloys. Phys. Rev. B 2017, 95, 184432. [Google Scholar] [CrossRef]
- Cavaliere, F.; Razzoli, L.; Carrega, M.; Benenti, G.; Sassetti, M. Hybrid quantum thermal machines with dynamical couplings. iScience 2023, 26, 106235. [Google Scholar] [CrossRef]
- Eckhardt, C.J.; Passetti, G.; Othman, M.; Karrasch, C.; Cavaliere, F.; Sentef, M.A.; Kennes, D.M. Quantum Floquet engineering with an exactly solvable tight-binding chain in a cavity. Commun. Phys. 2022, 5, 122. [Google Scholar] [CrossRef]
- Feng, X.Y.; Zhang, G.M.; Xiang, T. Topological Characterization of Quantum Phase Transitions in a Spin-1/2 Model. Phys. Rev. Lett. 2007, 98, 087204. [Google Scholar] [CrossRef]
- Duivenvoorden, K.; Quella, T. Topological phases of spin chains. Phys. Rev. B 2013, 87, 125145. [Google Scholar] [CrossRef]
- Dubinkin, O.; Hughes, T.L. Higher-order bosonic topological phases in spin models. Phys. Rev. B 2019, 99, 235132. [Google Scholar] [CrossRef]
- Balents, L. Spin liquids in frustrated magnets. Nature 2010, 464, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Diep, H.T. Frustrated Spin Systems; World Scientific: Singapore, 2013. [Google Scholar]
- Sacco Shaikh, D.; Catalano, A.G.; Cavaliere, F.; Franchini, F.; Sassetti, M.; Traverso Ziani, N. Phase diagram of the topologically frustrated XY chain. Eur. Phys. J. Plus 2024, 139, 1–14. [Google Scholar] [CrossRef]
- Marić, V.; Giampaolo, S.M.; Franchini, F. Quantum phase transition induced by topological frustration. Commun. Phys. 2020, 3, 220. [Google Scholar] [CrossRef]
- Lacroix, C.; Mendels, P.; Mila, F. Introduction to Frustrated Magnetism: Materials, Experiments, Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 164. [Google Scholar]
- Mitra, A. Quantum quench dynamics. Annu. Rev. Condens. Matter Phys. 2018, 9, 245–259. [Google Scholar] [CrossRef]
- Essler, F.H.; Fagotti, M. Quench dynamics and relaxation in isolated integrable quantum spin chains. J. Stat. Mech. Theory Exp. 2016, 2016, 064002. [Google Scholar] [CrossRef]
- Porta, S.; Gambetta, F.M.; Traverso Ziani, N.; Kennes, D.M.; Sassetti, M.; Cavaliere, F. Nonmonotonic response and light-cone freezing in fermionic systems under quantum quenches from gapless to gapped or partially gapped states. Phys. Rev. B 2018, 97, 035433. [Google Scholar] [CrossRef]
- Porta, S.; Cavaliere, F.; Sassetti, M.; Traverso Ziani, N. Topological classification of dynamical quantum phase transitions in the xy chain. Sci. Rep. 2020, 10, 12766. [Google Scholar] [CrossRef]
- Faure, Q.; Takayoshi, S.; Simonet, V.; Grenier, B.; Månsson, M.; White, J.S.; Tucker, G.S.; Rüegg, C.; Lejay, P.; Giamarchi, T.; et al. Tomonaga-Luttinger Liquid Spin Dynamics in the Quasi-One-Dimensional Ising-Like Antiferromagnet BaCo2V2O8. Phys. Rev. Lett. 2019, 123, 027204. [Google Scholar] [CrossRef]
- Faure, Q.; Takayoshi, S.; Petit, S.; Simonet, V.; Raymond, S.; Regnault, L.P.; Boehm, M.; White, J.S.; Månsson, M.; Rüegg, C.; et al. Topological quantum phase transition in the Ising-like antiferromagnetic spin chain BaCo2V2O8. Nat. Phys. 2018, 14, 716–722. [Google Scholar] [CrossRef]
- Kinoshita, T.; Wenger, T.; Weiss, D.S. A quantum Newton’s cradle. Nature 2006, 440, 900–903. [Google Scholar] [CrossRef]
- Holstein, T.; Primakoff, H. Field Dependence of the Intrinsic Domain Magnetization of a Ferromagnet. Phys. Rev. 1940, 58, 1098–1113. [Google Scholar] [CrossRef]
- Popov, V.N.; Fedotov, S. The functional-integration method and diagram technique for spin systems. Zh. Eksp. Teor. Fiz 1988, 94, 183–194. [Google Scholar]
- Traverso, S.; Fleckenstein, C.; Sassetti, M.; Ziani, N.T. An exact local mapping from clock-spins to fermions. SciPost Phys. Core 2023, 6, 055. [Google Scholar] [CrossRef]
- Traverso Ziani, N.; Fleckenstein, C.; Dolcetto, G.; Trauzettel, B. Fractional charge oscillations in quantum dots with quantum spin Hall effect. Phys. Rev. B 2017, 95, 205418. [Google Scholar] [CrossRef]
- Rodriguez, R.; Parmentier, F.; Ferraro, D.; Roulleau, P.; Gennser, U.; Cavanna, A.; Sassetti, M.; Portier, F.; Mailly, D.; Roche, P. Relaxation and revival of quasiparticles injected in an interacting quantum Hall liquid. Nat. Commun. 2020, 11, 2426. [Google Scholar] [CrossRef] [PubMed]
- Gambetta, F.M.; Ziani, N.T.; Barbarino, S.; Cavaliere, F.; Sassetti, M. Anomalous Friedel oscillations in a quasihelical quantum dot. Phys. Rev. B 2015, 91, 235421. [Google Scholar] [CrossRef]
- Ziani, N.T.; Cavaliere, F.; Sassetti, M. Theory of the STM detection of Wigner molecules in spin-incoherent CNTs. Europhys. Lett. 2013, 102, 47006. [Google Scholar] [CrossRef]
- Ziani, N.T.; Cavaliere, F.; Becerra, K.G.; Sassetti, M. A Short Review of One-Dimensional Wigner Crystallization. Crystals 2021, 11, 20. [Google Scholar] [CrossRef]
- Bloch, I.; Dalibard, J.; Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 2008, 80, 885–964. [Google Scholar] [CrossRef]
- Cazalilla, M.A.; Citro, R.; Giamarchi, T.; Orignac, E.; Rigol, M. One dimensional bosons: From condensed matter systems to ultracold gases. Rev. Mod. Phys. 2011, 83, 1405–1466. [Google Scholar] [CrossRef]
- Trotzky, S.; Chen, Y.A.; Flesch, A.; McCulloch, I.P.; Schollwöck, U.; Eisert, J.; Bloch, I. Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nat. Phys. 2012, 8, 325–330. [Google Scholar] [CrossRef]
- Imambekov, A.; Glazman, L.I. Universal Theory of Nonlinear Luttinger Liquids. Science 2009, 323, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Imambekov, A.; Schmidt, T.L.; Glazman, L.I. One-dimensional quantum liquids: Beyond the Luttinger liquid paradigm. Rev. Mod. Phys. 2012, 84, 1253–1306. [Google Scholar] [CrossRef]
- Wu, C.; Bernevig, B.A.; Zhang, S.C. Helical Liquid and the Edge of Quantum Spin Hall Systems. Phys. Rev. Lett. 2006, 96, 106401. [Google Scholar] [CrossRef]
- Fiete, G.A.; Le Hur, K.; Balents, L. Coulomb drag between two spin-incoherent Luttinger liquids. Phys. Rev. B 2006, 73, 165104. [Google Scholar] [CrossRef]
- Fiete, G.A. Colloquium: The spin-incoherent Luttinger liquid. Rev. Mod. Phys. 2007, 79, 801–820. [Google Scholar] [CrossRef]
- Matveev, K.A.; Furusaki, A.; Glazman, L.I. Bosonization of strongly interacting one-dimensional electrons. Phys. Rev. B 2007, 76, 155440. [Google Scholar] [CrossRef]
- Voit, J. One-dimensional Fermi liquids. Rep. Prog. Phys. 1995, 58, 977. [Google Scholar] [CrossRef]
- Haldane, F.D.M. Effective Harmonic-Fluid Approach to Low-Energy Properties of One-Dimensional Quantum Fluids. Phys. Rev. Lett. 1981, 47, 1840–1843. [Google Scholar] [CrossRef]
- Haldane, F.D.M. ’Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. Solid State Phys. 1981, 14, 2585. [Google Scholar] [CrossRef]
- Giamarchi, T. Quantum Physics in One Dimension; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Bethe, H. Zur theorie der metalle: I. Eigenwerte und eigenfunktionen der linearen atomkette. Z. Phys. 1931, 71, 205–226. [Google Scholar] [CrossRef]
- Jordan, P.; Wigner, E. Über das Paulische Äquivalenzverbot. Z. Phys. 1928, 47, 631–651. [Google Scholar] [CrossRef]
- Franchini, F. An Introduction to Integrable Techniques for One-Dimensional Quantum Systems; Springer: Berlin/Heidelberg, Germany, 2017; Volume 940. [Google Scholar]
- Bayat, A.; Bose, S.; Johannesson, H. Entanglement in Spin Chains: From Theory to Quantum Technology Applications; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Le, T.P.; Levinsen, J.; Modi, K.; Parish, M.M.; Pollock, F.A. Spin-chain model of a many-body quantum battery. Phys. Rev. A 2018, 97, 022106. [Google Scholar] [CrossRef]
- Liu, J.X.; Shi, H.L.; Shi, Y.H.; Wang, X.H.; Yang, W.L. Entanglement and work extraction in the central-spin quantum battery. Phys. Rev. B 2021, 104, 245418. [Google Scholar] [CrossRef]
- Zhao, F.; Dou, F.Q.; Zhao, Q. Quantum battery of interacting spins with environmental noise. Phys. Rev. A 2021, 103, 033715. [Google Scholar] [CrossRef]
- Catalano, A.; Giampaolo, S.; Morsch, O.; Giovannetti, V.; Franchini, F. Frustrating Quantum Batteries. PRX Quantum 2024, 5, 030319. [Google Scholar] [CrossRef]
- Grazi, R.; Sacco Shaikh, D.; Sassetti, M.; Traverso Ziani, N.; Ferraro, D. Controlling Energy Storage Crossing Quantum Phase Transitions in an Integrable Spin Quantum Battery. Phys. Rev. Lett. 2024, 133, 197001. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Elghaayda, S.; Al-Kuwari, S.; Hussain, M.I.; Rahim, M.T.; Kuniyil, H.; Seuda, C.; Allati, A.E.; Mansour, M.; Haddadi, S. Super-Extensive Scaling in 1D Spin-1/2XY − Γ(γ) Chain Quantum Battery. arXiv 2024, arXiv:2411.14074. [Google Scholar]
- Alicki, R.; Fannes, M. Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E 2013, 87, 042123. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S.; Dutta, A. Quantum thermal machines and batteries. Eur. Phys. J. 2021, 94, 239. [Google Scholar] [CrossRef]
- Campaioli, F.; Gherardini, S.; Quach, J.Q.; Polini, M.; Andolina, G.M. Colloquium: Quantum batteries. Rev. Mod. Phys. 2024, 96, 031001. [Google Scholar] [CrossRef]
- Quach, J.; Cerullo, G.; Virgili, T. Quantum batteries: The future of energy storage? Joule 2023, 7, 2195–2200. [Google Scholar] [CrossRef]
- Benenti, G.; Casati, G.; Saito, K.; Whitney, R.S. Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys. Rep. 2017, 694, 1–124. [Google Scholar] [CrossRef]
- Esposito, M.; Harbola, U.; Mukamel, S. Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 2009, 81, 1665–1702. [Google Scholar] [CrossRef]
- Campisi, M.; Fazio, R. Dissipation, correlation and lags in heat engines. J. Phys. Math. Theor. 2016, 49, 345002. [Google Scholar] [CrossRef]
- Vinjanampathy, S.; Anders, J. Quantum thermodynamics. Contemp. Phys. 2016, 57, 545–579. [Google Scholar] [CrossRef]
- Potts, P.P. Quantum Thermodynamics. arXiv 2024, arXiv:2406.19206. [Google Scholar]
- Hu, C.K.; Qiu, J.; Souza, P.J.P.; Yuan, J.; Zhou, Y.; Zhang, L.; Chu, J.; Pan, X.; Hu, L.; Li, J.; et al. Optimal charging of a superconducting quantum battery. Quantum Sci. Technol. 2022, 7, 045018. [Google Scholar] [CrossRef]
- Gemme, G.; Andolina, G.M.; Pellegrino, F.M.D.; Sassetti, M.; Ferraro, D. Off-Resonant Dicke Quantum Battery: Charging by Virtual Photons. Batteries 2023, 9, 197. [Google Scholar] [CrossRef]
- Dou, F.Q.; Yang, F.M. Superconducting transmon qubit-resonator quantum battery. Phys. Rev. A 2023, 107, 023725. [Google Scholar] [CrossRef]
- Razzoli, L.; Gemme, G.; Khomchenko, I.; Sassetti, M.; Ouerdane, H.; Ferraro, D.; Benenti, G. Cyclic solid-state quantum battery: Thermodynamic characterization and quantum hardware simulation. Quantum Sci. Technol. 2025, 10, 015064. [Google Scholar] [CrossRef]
- Cavaliere, F.; Gemme, G.; Benenti, G.; Ferraro, D.; Sassetti, M. Dynamical blockade of a reservoir for optimal performances of a quantum battery. arXiv 2024, arXiv:2407.16471. [Google Scholar]
- Chiribella, G.; Yang, Y.; Renner, R. Fundamental Energy Requirement of Reversible Quantum Operations. Phys. Rev. X 2021, 11, 021014. [Google Scholar] [CrossRef]
- Menta, R.; Cioni, F.; Aiudi, R.; Polini, M.; Giovannetti, V. Globally driven superconducting quantum computing architecture. arXiv 2024, arXiv:2407.01182. [Google Scholar]
- Elyasi, S.N.; Rossi, M.A.C.; Genoni, M.G. Experimental simulation of daemonic work extraction in open quantum batteries on a digital quantum computer. arXiv 2024, arXiv:2410.16567. [Google Scholar]
- Binder, F.C.; Vinjanampathy, S.; Modi, K.; Goold, J. Quantacell: Powerful charging of quantum batteries. New J. Phys. 2015, 17, 075015. [Google Scholar] [CrossRef]
- Andolina, G.M.; Farina, D.; Mari, A.; Pellegrini, V.; Giovannetti, V.; Polini, M. Charger-mediated energy transfer in exactly solvable models for quantum batteries. Phys. Rev. B 2018, 98, 205423. [Google Scholar] [CrossRef]
- Crescente, A.; Ferraro, D.; Carrega, M.; Sassetti, M. Enhancing coherent energy transfer between quantum devices via a mediator. Phys. Rev. Res. 2022, 4, 033216. [Google Scholar] [CrossRef]
- Perk, J.; Capel, H.; Zuilhof, M.; Siskens, T. On a soluble model of an antiferromagnetic chain with alternating interactions and magnetic moments. Phys. Stat. Mech. Its Appl. 1975, 81, 319–348. [Google Scholar] [CrossRef]
- Wakatsuki, R.; Ezawa, M.; Tanaka, Y.; Nagaosa, N. Fermion fractionalization to Majorana fermions in a dimerized Kitaev superconductor. Phys. Rev. B 2014, 90, 014505. [Google Scholar] [CrossRef]
- Ziani, N.T.; Fleckenstein, C.; Vigliotti, L.; Trauzettel, B.; Sassetti, M. From fractional solitons to Majorana fermions in a paradigmatic model of topological superconductivity. Phys. Rev. B 2020, 101, 195303. [Google Scholar] [CrossRef]
- Jackiw, R.; Rebbi, C. Solitons with fermion number ½. Phys. Rev. D 1976, 13, 3398–3409. [Google Scholar] [CrossRef]
- Kivelson, S.; Schrieffer, J.R. Fractional charge, a sharp quantum observable. Phys. Rev. B 1982, 25, 6447–6451. [Google Scholar] [CrossRef]
- Goldstone, J.; Wilczek, F. Fractional Quantum Numbers on Solitons. Phys. Rev. Lett. 1981, 47, 986–989. [Google Scholar] [CrossRef]
- Heeger, A.J.; Kivelson, S.; Schrieffer, J.R.; Su, W.P. Solitons in conducting polymers. Rev. Mod. Phys. 1988, 60, 781–850. [Google Scholar] [CrossRef]
- Qi, X.L.; Hughes, T.L.; Zhang, S.C. Fractional charge and quantized current in the quantum spin Hall state. Nat. Phys. 2008, 4, 273–276. [Google Scholar] [CrossRef]
- Fleckenstein, C.; Ziani, N.T.; Calzona, A.; Sassetti, M.; Trauzettel, B. Formation and detection of Majorana modes in quantum spin Hall trenches. Phys. Rev. B 2021, 103, 125303. [Google Scholar] [CrossRef]
- Traverso, S.; Sassetti, M.; Traverso Ziani, N. Emerging topological bound states in Haldane model zigzag nanoribbons. Npj Quantum Mater. 2024, 9, 9. [Google Scholar] [CrossRef]
- Traverso, S.; Traverso Ziani, N.; Sassetti, M. Effects of the Vertices on the Topological Bound States in a Quasicrystalline Topological Insulator. Symmetry 2022, 14, 1736. [Google Scholar] [CrossRef]
- Traverso, S.; Sassetti, M.; Ziani, N.T. Role of the edges in a quasicrystalline Haldane model. Phys. Rev. B 2022, 106, 125428. [Google Scholar] [CrossRef]
- Kitaev, A.Y. Unpaired Majorana fermions in quantum wires. Physics-Uspekhi 2001, 44, 131. [Google Scholar] [CrossRef]
- Deng, M.T.; Vaitiekėnas, S.; Hansen, E.B.; Danon, J.; Leijnse, M.; Flensberg, K.; Nygård, J.; Krogstrup, P.; Marcus, C.M. Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science 2016, 354, 1557–1562. [Google Scholar] [CrossRef]
- Peñaranda, F.; Aguado, R.; San-Jose, P.; Prada, E. Quantifying wave-function overlaps in inhomogeneous Majorana nanowires. Phys. Rev. B 2018, 98, 235406. [Google Scholar] [CrossRef]
- Fleckenstein, C.; Domínguez, F.; Traverso Ziani, N.; Trauzettel, B. Decaying spectral oscillations in a Majorana wire with finite coherence length. Phys. Rev. B 2018, 97, 155425. [Google Scholar] [CrossRef]
- Roy, D.; Bondyopadhaya, N.; Tewari, S. Topologically trivial zero-bias conductance peak in semiconductor Majorana wires from boundary effects. Phys. Rev. B 2013, 88, 020502. [Google Scholar] [CrossRef]
- Flensberg, K. Tunneling characteristics of a chain of Majorana bound states. Phys. Rev. B 2010, 82, 180516. [Google Scholar] [CrossRef]
- Law, K.T.; Lee, P.A.; Ng, T.K. Majorana Fermion Induced Resonant Andreev Reflection. Phys. Rev. Lett. 2009, 103, 237001. [Google Scholar] [CrossRef] [PubMed]
- Prada, E.; San-Jose, P.; de Moor, M.W.A.; Geresdi, A.; Lee, E.J.H.; Klinovaja, J.; Loss, D.; Nygård, J.; Aguado, R.; Kouwenhoven, L.P. From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires. Nat. Rev. Phys. 2020, 2, 575–594. [Google Scholar] [CrossRef]
- Ivanov, D.A. Non-Abelian Statistics of Half-Quantum Vortices in p-Wave Superconductors. Phys. Rev. Lett. 2001, 86, 268–271. [Google Scholar] [CrossRef]
- Marra, P. Majorana nanowires for topological quantum computation. J. Appl. Phys. 2022, 132, 231101. [Google Scholar] [CrossRef]
- Leijnse, M.; Flensberg, K. Introduction to topological superconductivity and Majorana fermions. Semicond. Sci. Technol. 2012, 27, 124003. [Google Scholar] [CrossRef]
- Nayak, C.; Simon, S.H.; Stern, A.; Freedman, M.; Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 2008, 80, 1083–1159. [Google Scholar] [CrossRef]
- Kitaev, A. Fault-tolerant quantum computation by anyons. Ann. Phys. 2003, 303, 2–30. [Google Scholar] [CrossRef]
- Oreg, Y.; Refael, G.; von Oppen, F. Helical Liquids and Majorana Bound States in Quantum Wires. Phys. Rev. Lett. 2010, 105, 177002. [Google Scholar] [CrossRef] [PubMed]
- Lutchyn, R.M.; Sau, J.D.; Das Sarma, S. Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor Heterostructures. Phys. Rev. Lett. 2010, 105, 077001. [Google Scholar] [CrossRef] [PubMed]
- Smacchia, P.; Amico, L.; Facchi, P.; Fazio, R.; Florio, G.; Pascazio, S.; Vedral, V. Statistical mechanics of the cluster Ising model. Phys. Rev. A 2011, 84, 022304. [Google Scholar] [CrossRef]
- Ding, C. Phase transitions of a cluster Ising model. Phys. Rev. E 2019, 100, 042131. [Google Scholar] [CrossRef] [PubMed]
- Susskind, L. Lattice fermions. Phys. Rev. D 1977, 16, 3031–3039. [Google Scholar] [CrossRef]
- Shamir, Y. Chiral fermions from lattice boundaries. Nucl. Phys. 1993, 406, 90–106. [Google Scholar] [CrossRef]
- Neyenhuis, B.; Zhang, J.; Hess, P.W.; Smith, J.; Lee, A.C.; Richerme, P.; Gong, Z.X.; Gorshkov, A.V.; Monroe, C. Observation of prethermalization in long-range interacting spin chains. Sci. Adv. 2017, 3, e1700672. [Google Scholar] [CrossRef]
- Kim, M.S.; de Oliveira, F.A.M.; Knight, P.L. Properties of squeezed number states and squeezed thermal states. Phys. Rev. A 1989, 40, 2494–2503. [Google Scholar] [CrossRef] [PubMed]
- Puskarov, T.; Schuricht, D. Time evolution during and after finite-time quantum quenches in the transverse-field Ising chain. SciPost Phys. 2016, 1, 003. [Google Scholar] [CrossRef]
- Jeske, J.; Vogt, N.; Cole, J.H. Excitation and state transfer through spin chains in the presence of spatially correlated noise. Phys. Rev. A 2013, 88, 062333. [Google Scholar] [CrossRef]
- Aftergood, J.; Takei, S. Noise in tunneling spin current across coupled quantum spin chains. Phys. Rev. B 2018, 97, 014427. [Google Scholar] [CrossRef]
- Singh, M.; Gangadharaiah, S. Driven quantum spin chain in the presence of noise: Anti-Kibble-Zurek behavior. Phys. Rev. B 2021, 104, 064313. [Google Scholar] [CrossRef]
- Werner, P.; Troyer, M.; Sachdev, S. Quantum Spin Chains with Site Dissipation. J. Phys. Soc. Jpn. 2005, 74, 67–70. [Google Scholar] [CrossRef]
- Chen, C.; An, J.H.; Luo, H.G.; Sun, C.P.; Oh, C.H. Floquet control of quantum dissipation in spin chains. Phys. Rev. A 2015, 91, 052122. [Google Scholar] [CrossRef]
- Schwager, H.; Cirac, J.I.; Giedke, G. Dissipative spin chains: Implementation with cold atoms and steady-state properties. Phys. Rev. A 2013, 87, 022110. [Google Scholar] [CrossRef]
- Shibata, N.; Katsura, H. Dissipative spin chain as a non-Hermitian Kitaev ladder. Phys. Rev. B 2019, 99, 174303. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grazi, R.; Cavaliere, F.; Traverso Ziani, N.; Ferraro, D. Charging a Dimerized Quantum XY Chain. Symmetry 2025, 17, 220. https://doi.org/10.3390/sym17020220
Grazi R, Cavaliere F, Traverso Ziani N, Ferraro D. Charging a Dimerized Quantum XY Chain. Symmetry. 2025; 17(2):220. https://doi.org/10.3390/sym17020220
Chicago/Turabian StyleGrazi, Riccardo, Fabio Cavaliere, Niccolò Traverso Ziani, and Dario Ferraro. 2025. "Charging a Dimerized Quantum XY Chain" Symmetry 17, no. 2: 220. https://doi.org/10.3390/sym17020220
APA StyleGrazi, R., Cavaliere, F., Traverso Ziani, N., & Ferraro, D. (2025). Charging a Dimerized Quantum XY Chain. Symmetry, 17(2), 220. https://doi.org/10.3390/sym17020220