Step-Wise Parameter Adaptive FMD Incorporating Clustering Algorithm in Rolling Bearing Compound Fault Diagnosis
<p>Filtering characteristics of FMD with different Hurst exponents: (<b>a</b>) <span class="html-italic">H</span> = 0.2; (<b>b</b>) <span class="html-italic">H</span> = 0.5; (<b>c</b>) <span class="html-italic">H</span> = 0.8; (<b>d</b>) <span class="html-italic">H</span> = 1.</p> "> Figure 2
<p>Filtering characteristics of FMD under different numbers of modes <span class="html-italic">n</span>: (<b>a</b>) <span class="html-italic">n</span> = 4; (<b>b</b>) <span class="html-italic">n</span> = 6.</p> "> Figure 3
<p>Filtering characteristics of FMD under different filter lengths <span class="html-italic">L</span>: (<b>a</b>) <span class="html-italic">L</span> = 60; (<b>b</b>) <span class="html-italic">L</span> = 40.</p> "> Figure 4
<p>Filtering characteristics of FMD under different numbers of segments <span class="html-italic">K</span>: (<b>a</b>) <span class="html-italic">K</span> = 10; (<b>b</b>) <span class="html-italic">K</span> = 7.</p> "> Figure 5
<p>The Robustness of Various Metrics under Different SNR: (<b>a</b>) Inner Race Fault; (<b>b</b>) Rolling Element Fault; (<b>c</b>) Outer Race Fault.</p> "> Figure 6
<p>Variation Rates under Different SNR: (<b>a</b>) Inner Race Fault Variation Rate; (<b>b</b>) Rolling Element Fault Variation Rate; (<b>c</b>) Outer Race Fault Variation Rate.</p> "> Figure 7
<p>Flowchart of composite fault diagnosis.</p> "> Figure 8
<p>Simulation signal processing results: (<b>a</b>) time-domain diagram of outer race fault; (<b>b</b>) time-domain diagram of inner race fault; (<b>c</b>) time-domain diagram of analog signal; (<b>d</b>) analog signal envelope diagram; (<b>e</b>) clustering renderings; (<b>f</b>) composite indicator iteration curve.</p> "> Figure 9
<p>Simulation signal decomposition: (<b>a</b>) Time-domain diagram of each IMF component; (<b>b</b>) Envelope plot of IMF components; (<b>c</b>) IMF1 envelope diagram; (<b>d</b>) IMF5 envelope diagram.</p> "> Figure 10
<p>Processing results of different indicators: (<b>a</b>) EE; (<b>b</b>) IE; (<b>c</b>) SE; (<b>d</b>) EnE.</p> "> Figure 11
<p>Results of different algorithms: (<b>a</b>) GWO; (<b>b</b>) PSO; (<b>c</b>) DE; (<b>d</b>) SSA.</p> "> Figure 12
<p>Comparison method processing results: (<b>a</b>) Simultaneous optimization of three parameters by WOA; (<b>b</b>) Time–Cost comparison.</p> "> Figure 13
<p>HZXT-DS-003 double-span rotor rolling bearing experimental bench and collection equipment.</p> "> Figure 14
<p>Experimental signal I processing results: (<b>a</b>) Time-domain diagram; (<b>b</b>) Envelope spectrum; (<b>c</b>) Clustering results; (<b>d</b>) Iterative curve.</p> "> Figure 15
<p>Experimental signal I decomposition: (<b>a</b>) Time-domain diagram of each IMF component; (<b>b</b>) Envelope plot of IMF components; (<b>c</b>) IMF time-domain diagram; (<b>d</b>) IMF envelope diagram.</p> "> Figure 16
<p>Comparison method processing results: (<b>a</b>) EE t; (<b>b</b>) IE; (<b>c</b>) SE; (<b>d</b>) EnE.</p> "> Figure 17
<p>Comparison method processing results: (<b>a</b>) GWO; (<b>b</b>) PSO; (<b>c</b>) DE; (<b>d</b>) SSA; (<b>e</b>) WOA optimizing three parameters simultaneously; (<b>f</b>) Time–cost comparison.</p> "> Figure 18
<p>Bearing data test bed, University of Paderborn, Germany.</p> "> Figure 19
<p>Experimental signal II processing results: (<b>a</b>) Time-domain diagram; (<b>b</b>) Envelope spectrum; (<b>c</b>) Clustering results; (<b>d</b>) Iterative curve.</p> "> Figure 20
<p>Experimental signal II decomposition: (<b>a</b>) Time-domain diagram of each IMF component; (<b>b</b>) Envelope plot of IMF components; (<b>c</b>) IMF1 envelope diagram; (<b>d</b>) IMF2 envelope diagram.</p> "> Figure 21
<p>Comparison method processing results: (<b>a</b>) EMD; (<b>b</b>) EEMD; (<b>c</b>) VMD; (<b>d</b>) EWT.</p> ">
Abstract
:1. Introduction
2. Feature Mode Decomposition
2.1. Feature Mode Decomposition Principle
2.1.1. Adaptive FIR Filter Bank
2.1.2. Filter Update and Period Estimation
2.1.3. Mode Selection
2.2. FMD Filtering Characteristics
3. A New Indicator Suitable for Compound Faults
3.1. Construction of the Compound Fault Indicator
3.2. Response of Various Metrics to Faults Under Different SNR
4. Composite Fault Diagnosis Method
4.1. Principle and Process of Density Peak Clustering
- The clustering process is divided into two main steps: local density estimation and minimum distance calculation. Using the two metrics of local density and minimum distance, the cluster centers in the data can be effectively identified, while other data points are assigned to the corresponding clusters based on their similarity to the cluster centers.
- 2.
- Cluster centers are selected based on two key metrics: local density and high local density distance . Points with large local density and large high local density distance are identified as cluster centers. On the contrary, points with larger high local density distance but smaller local density are considered anomalies. Once the clustering centers are identified, the other data points are classified based on their distance from the nearest clustering center, or based on a density accessibility approach.
4.2. Whale Optimization Algorithm
- Initialization: The expression to initialize the position of the whale population is as follows:
- 2.
- Surrounding prey: Whales update their position by surrounding prey, and the expression is as follows:
- 3.
- Capture of prey: The whale captures prey utilizing a spiral motion with the following expression:
- 4.
- Searching for prey: The goal of searching for prey is to find a better solution, i.e., the global optimal solution. The expression is as follows:
4.3. Bearing Composite Fault Diagnosis Procedure
- Step 1. Data Collection: Acquire vibration signals using accelerometers.
- Step 2. Determination of FMD Modal Quantity n: Analyze the distance distribution and local density of the signals using the Density Peak Clustering (DPC) algorithm to identify cluster centers and infer the modal quantity n for FMD. The specific steps are as follows:
- Step 3. Construction of the Objective Function: Integrate the spectral energy and modal characteristics in the signal to construct a composite fault indicator.
- Step 4. Determination of Filter Length and Segments: Evaluate the decomposition characteristics of the composite indicator using the Whale Optimization Algorithm (WOA) and optimize the filter length and number of segments through iterative processes. The specific steps are as follows:
- Step 5. FMD Decomposition: Based on the optimized parameters determined in Steps 2 and 4, use FMD to decompose the original vibration signal into multiple IMF components.
- Step 6. Fault diagnosis: According to the composite fault indicator AKER, select the IMF components that are most sensitive to the fault characteristics. Perform envelope analysis on the selected IMF components to extract their envelope spectra, and conduct a detailed analysis of the characteristic frequencies and their harmonics within the envelope spectra to accurately identify the composite fault patterns of the bearing.
5. Experimental Analysis
5.1. Analyzing the Simulated Signals
5.1.1. Bearing Composite Fault Simulation Model
5.1.2. Comparison of Fault Diagnosis Results with the Performance of Other Methods
5.2. Experimental Signal Analysis
5.2.1. Case 1: Double-Span Rotor Rolling Bearing Experimental Bench Data Set
5.2.2. Case 2: Germany University of Paderborn Bearing Dataset
6. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yao, S.; Zhang, Z.; Han, B.; Wang, J.; Zheng, J. Fast nonlinear cross-sparse filtering for rolling bearings compound fault diagnosis. Meas. Sci. Technol. 2024, 35, 035120. [Google Scholar] [CrossRef]
- Shen, W.; Xiao, M.; Wang, Z.; Song, X. Rolling Bearing Fault Diagnosis Based on Support Vector Machine Optimized by Improved Grey Wolf Algorithm. Sensors 2023, 23, 6645. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yan, C.; Hou, Y.; Jiadong, M.; Wen, T. Isolation and identification of rolling bearing compound faults based on adaptive periodized singular spectrum analysis and Rényi entropy. Meas. Sci. Technol. 2024, 35, 066102. [Google Scholar] [CrossRef]
- Zhou, H.; Zhu, L.; Zhong, F.; Cai, Y. Composite fault feature extraction of rolling bearing using adaptive circulant singular spectrum analysis. Meas. Sci. Technol. 2023, 34, 125031. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, Y.; Wu, X.; Wang, J.; Wu, Z.; Cheng, J. Symplectic Ramanujan Mode Decomposition and its application to compound fault diagnosis of bearings. ISA Trans. 2022, 129, 495–503. [Google Scholar] [CrossRef]
- Yang, Y.; Dong, X.J.; Peng, Z.K.; Zhang, W.M.; Meng, G. Vibration signal analysis using parameterized time-frequency method for features extraction of varying-speed rotary machinery. J. Sound Vib. 2015, 335, 350–366. [Google Scholar] [CrossRef]
- Wang, L.; Shao, Y. Fault feature extraction of rotating machinery using a reweighted complete ensemble empirical mode decomposition with adaptive noise and demodulation analysis. Mech. Syst. Signal Process. 2020, 138, 106545. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Li, Q. Intelligent fault diagnosis of rolling bearings under imbalanced data conditions using attention-based deep learning method. Measurement 2022, 189, 110500. [Google Scholar] [CrossRef]
- Gao, S.; Xu, L.; Zhang, Y.; Pei, Z. Rolling bearing fault diagnosis based on SSA optimized self-adaptive DBN. ISA Trans. 2022, 128, 485–502. [Google Scholar] [CrossRef]
- Huang, N.E.; Wu, Z. An adaptive data analysis method for nonlinear and nonstationary time series: The empirical mode decomposition and Hilbert Spectral Analysis. In Proceedings of the Conference on Wavelet Analysis and Applications, Macao, China, 29 November–2 December 2005; Qian, T., Vai, M.I., Xu, Y., Eds.; Birkhäuser: Basel, Switzerland, 2007; pp. 363–376. [Google Scholar]
- Zheng, J.; Cheng, J.; Yang, Y. Partly Ensemble Local Characteristic-Scale Decomposition: A New Noise Assisted Data Analysis Method. Acta Electron. Sin. 2013, 41, 1030–1035. [Google Scholar]
- Wang, Y.; He, Z.; Zi, Y. A demodulation method based on improved local mean decomposition and its application in rub-impact fault diagnosis. Meas. Sci. Technol. 2009, 20, 025704. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Jiang, X.; Shen, C.; Shi, J.; Zhu, Z. Initial center frequency-guided VMD for fault diagnosis of rotating machines. J. Sound Vib. 2018, 435, 36–55. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.; Liu, T.; Li, S.; Zhang, B.; Zhou, G.; Huang, T. Composite fault diagnosis for rolling bearing based on parameter-optimized VMD. Measurement 2022, 201, 111637. [Google Scholar] [CrossRef]
- Yi, C.; Wang, H.; Ran, L.; Zhou, L.; Lin, J. Power spectral density-guided variational mode decomposition for the compound fault diagnosis of rolling bearings. Measurement 2022, 199, 111494. [Google Scholar] [CrossRef]
- Li, J.; Yao, X.; Wang, H.; Zhang, J. Periodic impulses extraction based on improved adaptive VMD and sparse code shrinkage denoising and its application in rotating machinery fault diagnosis. Mech. Syst. Signal Process. 2019, 126, 568–589. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, J.; Liu, Z.; Wu, W. A modified scale-space guiding variational mode decomposition for high-speed railway bearing fault diagnosis. J. Sound Vib. 2019, 444, 216–234. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, B.; Li, C.; Lin, J. Feature Mode Decomposition: New Decomposition Theory for Rotating Machinery Fault Diagnosis. IEEE Trans. Ind. Electron. 2023, 70, 1949–1960. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Niu, G.; Wang, X.; Golda, M.; Mastro, S.; Zhang, B. An optimized adaptive PReLU-DBN for rolling element bearing fault diagnosis. Neurocomputing 2021, 445, 26–34. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, G. Bearing Fault-Detection Method Based on Improved Grey Wolf Algorithm to Optimize Parameters of Multistable Stochastic Resonance. Sensors 2023, 23, 6529. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Chen, M. A two-stage transformer fault diagnosis method based multi-filter interactive feature selection integrated adaptive sparrow algorithm optimised support vector machine. IET Electr. Power Appl. 2022, 17, 341–357. [Google Scholar] [CrossRef]
- Hu, Y.; Dong, M.; Wang, G.; Fan, Z.; Zhang, S. New method of bearing fault diagnosis based on mmemd and DE_ELM. J. Eng. 2019, 2019, 9152–9156. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Tian, H.; Xiong, X. A step-by-step parameter-adaptive FMD method and its application in fault diagnosis. Meas. Sci. Technol. 2024, 35, 046109. [Google Scholar] [CrossRef]
- Chauhan, S.; Vashishtha, G.; Kumar, R.; Zimroz, R.; Kundu, P. An adaptive feature mode decomposition based on a novel health indicator for bearing fault diagnosis. Measurement 2024, 226, 114191. [Google Scholar] [CrossRef]
- Yu, S.; Ma, J. Adaptive Composite Fault Diagnosis of Rolling Bearings Based on the CLNGO Algorithm. Processes 2022, 10, 2532. [Google Scholar] [CrossRef]
- Yan, X.; Jia, M. Bearing fault diagnosis via a parameter-optimized feature mode decomposition. Measurement 2022, 203, 112016. [Google Scholar] [CrossRef]
- Ghorpade, S.; Zennaro, M.; Chaudhari, B.S. GWO Model for Optimal Localization of IoT-Enabled Sensor Nodes in Smart Parking Systems. IEEE Trans. Intell. Transp. Syst. 2020, 22, 1217–1224. [Google Scholar] [CrossRef]
- Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496. [Google Scholar] [CrossRef]
- Wu, J.; Lin, M.; Lv, Y.; Cheng, Y. Intelligent fault diagnosis of rolling bearings based on clustering algorithm of fast search and find of density peaks. Qual. Eng. 2023, 35, 399–412. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Li, X.; Gao, S.; Guo, K.; Wei, Y. Fault Diagnosis of Mine Ventilator Bearing Based on Improved Variational Mode Decomposition and Density Peak Clustering. Machines 2023, 11, 27. [Google Scholar] [CrossRef]
- Wang, Y.; Markert, R. Filter bank property of variational mode decomposition and its applications. Signal Process. 2016, 120, 509–521. [Google Scholar] [CrossRef]
- An, G.; Tong, Q.; Zhang, Y.; Liu, R.; Li, W.; Cao, J.; Lin, Y. An Improved Variational Mode Decomposition and Its Application on Fault Feature Extraction of Rolling Element Bearing. Energies 2021, 14, 1079. [Google Scholar] [CrossRef]
- Han, M.; Wu, Y.; Wang, Y.; Liu, W. Roller bearing fault diagnosis based on LMD and multi-scale symbolic dynamic information entropy. J. Mech. Sci. Technol. 2021, 35, 1993–2005. [Google Scholar] [CrossRef]
- Zhuang, D.; Liu, H.; Zheng, H.; Xu, L.; Gu, Z.; Cheng, G.; Qiu, J. The IBA-ISMO Method for Rolling Bearing Fault Diagnosis Based on VMD-Sample Entropy. Sensors 2023, 23, 991. [Google Scholar] [CrossRef]
- Qiaoni, Z. Motor rolling bearing fault diagnosis based on MVMD energy entropy and GWO-SVM. J. Vibroeng. 2023, 25, 1096–1107. [Google Scholar]
Name | Parameters |
---|---|
Rolling bearing type | SKF6205 |
Shaft speed | 1797 r/min |
Sampling frequency | 12 KHz |
Inner race fault data | 105 .mat |
Rolling element fault data | 108 .mat |
Outer race fault data | 113 .mat |
Name | Parameters |
---|---|
Rolling bearing type | 6205-2RS |
Contact angle | 0° |
Bearing pitch diameter | 39.04 mm |
Ball diameter | 7.94 mm |
Number of balls | 9 |
Shaft speed | 1750 r/min |
Sampling frequency | 12 KHz |
Number of sampling points | 12,000 |
Name | Parameters |
---|---|
Outer race fault characteristic frequency | 104.56 Hz |
Inner race fault eigenfrequency | 157.94 Hz |
Characteristic frequency of rolling element faults | 137.48 Hz |
Name | Parameters | Manufacturer |
---|---|---|
Acceleration sensors | PCB352C33 | American PCB Company |
NI chassis | CDAQ-9184 | American NI Company |
Data acquisition cards | NI9234 | American NI Company |
Name | Parameters |
---|---|
Rolling bearing type | 6203 |
Contact angle | 0° |
Bearing pitch diameter | 29.05 mm |
Ball diameter | 6.75 mm |
Number of balls | 8 |
Shaft speed | 1500 r/min |
Sampling frequency | 64 KHz |
Number of sampling points | 60,000 |
Name | Parameters |
---|---|
Outer race fault characteristic frequency | 76.76 Hz |
Inner race fault characteristic frequency | 123.24 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Zhang, C.; Zhang, J.; Liu, G.; Wu, Y.; Ouyang, B. Step-Wise Parameter Adaptive FMD Incorporating Clustering Algorithm in Rolling Bearing Compound Fault Diagnosis. Symmetry 2024, 16, 1675. https://doi.org/10.3390/sym16121675
Xu S, Zhang C, Zhang J, Liu G, Wu Y, Ouyang B. Step-Wise Parameter Adaptive FMD Incorporating Clustering Algorithm in Rolling Bearing Compound Fault Diagnosis. Symmetry. 2024; 16(12):1675. https://doi.org/10.3390/sym16121675
Chicago/Turabian StyleXu, Shuai, Chao Zhang, Jing Zhang, Guiyi Liu, Yangbiao Wu, and Bing Ouyang. 2024. "Step-Wise Parameter Adaptive FMD Incorporating Clustering Algorithm in Rolling Bearing Compound Fault Diagnosis" Symmetry 16, no. 12: 1675. https://doi.org/10.3390/sym16121675
APA StyleXu, S., Zhang, C., Zhang, J., Liu, G., Wu, Y., & Ouyang, B. (2024). Step-Wise Parameter Adaptive FMD Incorporating Clustering Algorithm in Rolling Bearing Compound Fault Diagnosis. Symmetry, 16(12), 1675. https://doi.org/10.3390/sym16121675