Combinatorial Identities Concerning Binomial Quotients
Abstract
:1. Introduction and Motivation
2. Summation Formulae
3. Summation Formulae
4. Summation Formulae
5. Double Summation Formulae
6. Concluding Comments
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gould, H.W. Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial Coefficient Summations; Morgantown Printing and Binding Co.: Morgantown, WV, USA, 1972. [Google Scholar]
- Mansour, T. Combinatorial identities and inverse binomial coefficients. Adv. Appl. Math. 2002, 28, 196–202. [Google Scholar] [CrossRef]
- Rockett, A.M. Sums of the inverses of binomial coefficients. Fibonacci Quart. 1981, 19, 433–437. [Google Scholar]
- Trif, T. Combinatorial sums and series involving inverses of binomial coefficients. Fibonacci Quart. 2000, 38, 79–84. [Google Scholar]
- Sury, B. Sum of the reciprocals of the binomial coefficients. Eur. J. Combin. 1993, 14, 351–353. [Google Scholar] [CrossRef]
- Pla, J. The sum of the inverses of binomial coefficients revisited. Fibonacci Quart. 1997, 35, 342–345. [Google Scholar]
- Riordan, J. Combinatorial Identities; John Wiley & Sons: New York, NY, USA, 1968. [Google Scholar]
- Trif, T. Combinatorial sums and series involving inverses of the Gaussian binomial coefficients. J. Comb. Number Theory 2011, 3, 197–207. [Google Scholar]
- Comtet, L. Advanced Combinatorics; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1974. [Google Scholar]
- Graham, R.L.; Knuth, D.E.; Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed.; Addison—Wesley Publ. Company, Reading: Boston, MA, USA, 1994. [Google Scholar]
- Merlini, D.; Sprugnoli, R.; Verri, M.C. The method of coefficients. Am. Math. Mon. 2007, 114, 40–57. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Y.; Guo, D. Combinatorial identities concerning trigonometric functions and Fibonacci/Lucas numbers. AIMS Math. 2024, 9, 9348–9363. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, D. Summation formulas for certain combinatorial sequences. Mathematics 2024, 12, 1210. [Google Scholar] [CrossRef]
- Wilf, H.S.; Zeilberger, D. Rational functions certify combinatorial identities. J. Am. Math. Soc. 1990, 3, 147–158. [Google Scholar] [CrossRef]
- Guillera, J. Some binomial series obtained by the WZ-method. Adv. Appl. Math. 2002, 29, 599–603. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, T. Some identities related to reciprocal functions. Discret. Math. 2003, 265, 323–335. [Google Scholar] [CrossRef]
- Sprugnoli, R. Riordan arrays and combinatorial sums. Discret. Math. 1994, 132, 267–290. [Google Scholar] [CrossRef]
- Chu, W. Binomial sums via Bailey’s cubic transformation. Czech. Math. J. 2023, 73, 1131–1150. [Google Scholar] [CrossRef]
- Zeilberger, D. A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 1990, 32, 321–368. [Google Scholar] [CrossRef]
- Zeilberger, D. The method of creative telescoping. J. Symb. Comput. 1991, 11, 195–204. [Google Scholar] [CrossRef]
- Chu, W.; Guo, D. Alternating sums of binomial quotients. Math. Commun. 2022, 27, 203–213. [Google Scholar]
- Guo, D.; Chu, W. Inverse tangent series involving Pell and Pell-Lucas polynomials. Math. Slovaca 2022, 72, 869–884. [Google Scholar] [CrossRef]
- Chu, W. Analytical formulae for extended 3F2-series of Watson–Whipple–Dixon with two extra integer parameters. Math. Comput. 2012, 81, 467–479. [Google Scholar] [CrossRef]
- Bailey, W.N. Generalized Hypergeometric Series; Cambridge University Press: Cambridge, MA, USA, 1935. [Google Scholar]
- Chen, K.W. Clausen’s series 3F2(1) with integral parameter differences. Symmetry 2021, 13, 1783. [Google Scholar] [CrossRef]
- Li, N.N.; Chu, W. Non-terminating 3F2-series with unit argument. Integral Transform. Spec. Funct. 2018, 29, 450–469. [Google Scholar] [CrossRef]
- Milgram, M. On hypergeometric 3F2(1)–A review. arXiv 2010, arXiv:1011.4546v1. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Guo, D. Combinatorial Identities Concerning Binomial Quotients. Symmetry 2024, 16, 746. https://doi.org/10.3390/sym16060746
Chen Y, Guo D. Combinatorial Identities Concerning Binomial Quotients. Symmetry. 2024; 16(6):746. https://doi.org/10.3390/sym16060746
Chicago/Turabian StyleChen, Yulei, and Dongwei Guo. 2024. "Combinatorial Identities Concerning Binomial Quotients" Symmetry 16, no. 6: 746. https://doi.org/10.3390/sym16060746
APA StyleChen, Y., & Guo, D. (2024). Combinatorial Identities Concerning Binomial Quotients. Symmetry, 16(6), 746. https://doi.org/10.3390/sym16060746