The Hopf Automorphism Group of Two Classes of Drinfeld Doubles
Abstract
:1. Introduction
2. Preliminaries and Notations
3. The Construction of Drinfeld Doubles of Generalized Taft Algebra
4. Some Hopf Automorphisms of and
4.1. A Class of Hopf Automorphisms of
4.2. A Class of Hopf Automorphisms of
5. The Hopf Automorphism Groups of and
5.1. The Hopf Automorphism Group of
- (1)
- (2)
- where is the group consisting of all group-like elements of H, is the group consisting of all primitive elements of H, and .
5.2. The Hopf Automorphism Group of
- (1)
- (2)
- where is the group consisting of all group-like elements of T, and is the group consisting of all primitive elements of T, and .
6. Conclusions
- (a)
- Can this work be solved from the perspectives of eigenproblem and molecular alignment?
- (b)
- Which automorphism groups of infinite-dimensional Hopf algebras can be solved using our method?
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erdmann, K.; Green, E.L.; Snashall, N.; Taillefer, R. Stable Green Ring of the Drinfeld Doubles of the Generalised Taft Algebras (Corrections and New Results). Algebr. Represent. Theory 2019, 22, 757–783. [Google Scholar] [CrossRef]
- Sun, H.; Chen, H.X. Representations of Drinfeld Doubles of Radford Hopf algebras. arXiv 2023. [Google Scholar] [CrossRef]
- Links, J. Hopf Algebra Symmetries of an Integrable Hamiltonian for Anyonic Pairing. Axioms 2012, 1, 226–237. [Google Scholar] [CrossRef]
- Cao, T.Q.; Xin, Q.L.; Wei, X.M. Jones Type Basic Construction on Hopf Spin Models. Mathematics 2022, 8, 1547. [Google Scholar]
- Alev, J.; Chamarie, M. Derivations et Automorphisms de Quelques Algebras Quantique. Commun. Algebra 1992, 20, 1787–1802. [Google Scholar] [CrossRef]
- Twietmeyer, E. Real Forms of Uq(g). Lett. Math. Phys. 1992, 24, 49–58. [Google Scholar] [CrossRef]
- Kirkman, E.; Procesi, C.; Small, L. A q-analog for the Virasoro algebra. Commun. Algebra 1994, 22, 3755–3774. [Google Scholar] [CrossRef]
- Artamonov, V.A. Actions of pointed Hopf algebras on quantum Torus. Ann. Univ. Ferrara 2005, 51, 29–60. [Google Scholar] [CrossRef]
- Chen, H.X. The coalgebra automorphism group of Hopf algebra kq[x,x−1,y]. J. Pure Appl. Algebra 2013, 217, 1870–1887. [Google Scholar] [CrossRef]
- Ye, Y. Automorphisms of path coalgebras and applications. arXiv 2011, arXiv:1109.2986. [Google Scholar]
- Yu, D.; Jiang, C.; Ma, J. Study on poisson Algebra and Automorphism of a special class of Solvable Lie algebras. Symmetry 2023, 15, 1115. [Google Scholar] [CrossRef]
- Sweedler, M.E. Hopf Algebras; Benjamin: New York, NY, USA, 1969. [Google Scholar]
- Kassel, C. Quantum Groups; Springer: New York, NY, USA, 1995. [Google Scholar]
- Montgomery, S. Hopf Algebras and Their Actions on Rings; CBMS Series in Math; American Mathematical Society: Providence, RI, USA, 1993; Volume 82. [Google Scholar]
- Masood, F.; Al-shami, T.M.; El-Metwally, H. Solving some partial q-differential equations using transformation methods. Palest. J. Math. 2023, 12, 937–946. [Google Scholar]
- Radford, D.E. On the coradical of a finite-dimensional Hopf algebras. Proc. Am. Math. Soc. 1975, 53, 9–15. [Google Scholar]
- Krop, L.; Radford, D.E. Finite dimensional Hopf algebras of rank one in characteristic zero. J. Algebra 2006, 302, 214–230. [Google Scholar] [CrossRef]
- Wang, Z.H.; Li, L.B.; Zhang, Y.H. Green rings of pointed rank one Hopf algebras of non-nilpotent type. J. Algebra 2016, 449, 108–137. [Google Scholar] [CrossRef]
- Chen, H.X.; Huang, H.L.; Zhang, P. Generalized Taft algebras. J. Algebra Colloq. 2004, 11, 313–320. [Google Scholar]
- Taft, E.J. The order of the antipode of a finite-dimensional Hopf algebra. Proc. Natl. Acad. Sci. USA 1971, 68, 2631–2633. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Hu, M.; Hu, J. The Hopf Automorphism Group of Two Classes of Drinfeld Doubles. Symmetry 2024, 16, 735. https://doi.org/10.3390/sym16060735
Sun H, Hu M, Hu J. The Hopf Automorphism Group of Two Classes of Drinfeld Doubles. Symmetry. 2024; 16(6):735. https://doi.org/10.3390/sym16060735
Chicago/Turabian StyleSun, Hua, Mi Hu, and Jiawei Hu. 2024. "The Hopf Automorphism Group of Two Classes of Drinfeld Doubles" Symmetry 16, no. 6: 735. https://doi.org/10.3390/sym16060735
APA StyleSun, H., Hu, M., & Hu, J. (2024). The Hopf Automorphism Group of Two Classes of Drinfeld Doubles. Symmetry, 16(6), 735. https://doi.org/10.3390/sym16060735