Modelling EEG Dynamics with Brain Sources
<p>Analytical approximation of a solution to Equation (<a href="#FD1-symmetry-16-00189" class="html-disp-formula">1</a>) with three point-wise sources. The curves show the values of the solution in time at different space points (see <a href="#app2-symmetry-16-00189" class="html-app">Appendix A</a> for more details). (<b>A</b>) Sources with equal phases and frequencies, (<b>B</b>) different phases and equal frequencies, (<b>C</b>) different frequencies.</p> "> Figure 2
<p>Two snapshots of the potential distribution on the upper surface of the sphere in numerical simulations of Equation (<a href="#FD1-symmetry-16-00189" class="html-disp-formula">1</a>). There are three sources with the same frequency and phases (<math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> Hz, <math display="inline"><semantics> <mrow> <msub> <mi>ϕ</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>). The location of the sources approximately corresponds to the centers of the hot spots. For standing waves, oscillations of the potential occur without motion of the hot spots. The right panel shows the solution with inverse sign (time shift) compared to the left panel.</p> "> Figure 3
<p>Snapshots of the potential distribution on the upper surface of the sphere in numerical simulations of Equation (<a href="#FD1-symmetry-16-00189" class="html-disp-formula">1</a>). There are three sources with different frequencies (<math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math> Hz, <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> Hz, <math display="inline"><semantics> <mrow> <msub> <mi>ϕ</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>). Consecutive snapshots for the rotating regime show the motion of the hot spots between two neighboring sources.</p> "> Figure 4
<p>Snapshots of the potential distribution on the upper surface of the sphere in numerical simulations of Equation (<a href="#FD1-symmetry-16-00189" class="html-disp-formula">1</a>). There are four sources with different frequencies (lower source <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math> Hz, left and right sources <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> Hz, <math display="inline"><semantics> <mrow> <msub> <mi>ϕ</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, upper source is return source, see (<a href="#FD4-symmetry-16-00189" class="html-disp-formula">4</a>)). Consecutive snapshots show one period of the symmetric regime. The hot spot at the bottom (upper left panel) splits into two spots, which move up to the left and right sources (upper right panel). From there, they move to the upper source and merge (bottom left). Finally, the hot spot from the top descends along the symmetry line towards the lower source (bottom right). The color map corresponds to the value of solution at the cutting plane containing the sources (shown as dots).</p> "> Figure 5
<p>Numerical modeling of tACS (two stimulation electrodes and one return electrode) with the software SimNIBS. Each curve corresponds to the electric potential at one of the 27 electrodes. Three cases are studied: (1) the case of equal frequencies (10 Hz) and phases (left) corresponds to standing waves, (2) the case of equal frequencies and different phases (middle) describes out-of-phase oscillations, (3) different frequencies (10 Hz and 11 Hz, right) produce modulated oscillations. The last two cases correspond to the rotating regime (see <a href="#symmetry-16-00189-f006" class="html-fig">Figure 6</a>). Bold black lines indicate time-dependent GFP. Reprinted from [<a href="#B32-symmetry-16-00189" class="html-bibr">32</a>].</p> "> Figure 6
<p>(<b>A</b>) One period of a rotating regime in the data simulated using the software SimNIBS. There are three sources with different frequencies (10 and 11 Hz). The hot spot moves counter clock-wise from the left source (<b>upper left</b>) to the lower source (<b>upper right</b>), and then to the upper source (<b>lower middle</b>). It is essential to note that the rotation is non-uniform; the advancement of the forward front is succeeded by the progression of the backward fronts. The yellow dots indicate the maximum potential within a specific time window corresponding to time <span class="html-italic">t</span> and certain preceding time points. The straight black lines represent the transitions of this maximum. Each map in the upper row is paired with a corresponding one directly below it, featuring a reversed sign (hot/cold color). (<b>B</b>) Schematic representation of the trajectory of the maximum of the solution. Reprinted from [<a href="#B32-symmetry-16-00189" class="html-bibr">32</a>].</p> "> Figure 7
<p><b>Upper panel</b>: ERP signals (colored lines) for 30 electrodes averaged for 100 trials, and global field power (thick black line) for one subject in the theta range during the naming experiment. Time 0 corresponds to the image presentation, the large amplitude of the oscillations is consistent with image processing during the first 300 ms. <b>Lower panel</b>: scalp maps at the moments of time shown by the vertical lines in the upper panel. Synchronization of the electrodes and periodicity of the scalp maps correspond to a standing wave.</p> "> Figure 8
<p><b>Upper panel</b>: ERP signals (colored lines) for 30 electrodes averaged for 100 trials, and global field power (thick black line) for one subject in the alpha range during the naming experiment. Time 0 corresponds to the image presentation. <b>Lower panel</b>: scalp maps at the moments of time shown by the vertical lines in the upper panel. Asynchronization of the electrodes and the absence of exact periodicity of the scalp maps indicate a phase shift in the sources. Note that the amplitude of oscillations is close to constant.</p> "> Figure 9
<p><b>Upper panel</b>: ERP signals (colored lines) for 30 electrodes averaged for 100 trials for one subject in the beta range during the naming experiment. Time 0 corresponds to the image presentation. <b>Lower panel</b>: scalp maps at the moments of time shown by the vertical lines in the upper panel. Modulated oscillations of the electrodes indicate different frequencies of the sources. Note that the brain maps are close to periodic.</p> "> Figure 10
<p>Spatiotemporal dynamics in the individual trial of the EEG data in the alpha range for one subject. The moments of time are indicated in the images. Negative time corresponds to the next image preparation, but similar behavior was also observed during other stages of image processing and speech production. Consecutive snapshots correspond to one period of rotating regime. Note that the rotation is not uniform, propagation of forward and backward fronts alternate with each other. Images in the upper and lower rows are pairwise similar to each other with opposite colors. Direction of rotation changes after several periods. This regime is similar to the rotating regime observed in the numerical simulations (<a href="#symmetry-16-00189-f003" class="html-fig">Figure 3</a> and <a href="#symmetry-16-00189-f006" class="html-fig">Figure 6</a>).</p> "> Figure 11
<p>Spatiotemporal dynamics in the individual trial of the EEG data for the same subject and trial as in <a href="#symmetry-16-00189-f010" class="html-fig">Figure 10</a> but during a different time interval after the image presentation. Consecutive snapshots correspond to one period of the symmetric regime. The hot spot at the bottom splits into two spots moving upwards along the borders. They merge at the top and descend along the symmetry line. Images in the upper and lower rows are pairwise similar to each other with opposite colors. Note that the largest value of the potential (dark red) changes between left and right hot spots. Several (4–5) periods of this regime follow each other. The symmetry axis can change during another time interval; that is, form a nonzero angle with the vertical direction. This regime is similar to the symmetric regime observed in the numerical simulations (<a href="#symmetry-16-00189-f004" class="html-fig">Figure 4</a>).</p> "> Figure 12
<p>Unfolded trajectory showing the position of the potential maximum for some subject during one trial and frequency 22 Hz. Time 0 corresponds to image presentation, the red line (1200 ms) corresponds to the beginning of speech production. The whole trial can be split into the time intervals, where the trajectory periodically repeats its motion. These time intervals are shown by the color of the trajectory and by the straight lines in the rectangle below the trajectory (till time 1450 ms). The self-similarity of the trajectory was determined using the Hausdorff distance between the polygons formed by the trajectory. Note that the vertices of the trajectories are formed by 2–3 neighboring points, indicating local motion of the maximum. These vertices are separated by distant jumps (cf. <a href="#symmetry-16-00189-f006" class="html-fig">Figure 6</a>). There are usually three or four vertices that correspond to the rotating and to symmetric regimes. Longer sequences of neighboring points around 2000 ms correspond to moving waves (<a href="#sec3dot5-symmetry-16-00189" class="html-sec">Section 3.5</a>).</p> "> Figure 13
<p>Brain maps for two different subject at the frequency 22 Hz, (<b>A</b>) subject with aphasia, (<b>B</b>) control subject (matched for gender and age). Each dot corresponds to the beginning or to the end of the moving waves registered during 10 trials in the repetition of the same word (‘chien’ in French, i.e., dog). The curves connecting the dots show the trajectories of the maximum, and their color indicates the final moment in time of the wave existence relative to the image presentation (cf. the color bar). The areas of dot accumulation determined by the density map analysis are indicated by the black circles. Note the difference between the two maps and larger white areas without waves for the subject with aphasia.</p> "> Figure A1
<p>Schematic representation of the domain <math display="inline"><semantics> <mi mathvariant="sans-serif">Ω</mi> </semantics></math> in the case of three sources. The boundary of the domain is shown by the straight line above them.</p> "> Figure A2
<p>Solution (<a href="#FD8-symmetry-16-00189" class="html-disp-formula">A4</a>) for equal frequencies and phases at different moments of time (<b>left</b>). The same solution as a function of time at different space points (<b>right</b>). The values of parameters: <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>4</mn> <mi>π</mi> <mo>,</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>h</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ξ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ξ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>ξ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <msub> <mi>ϕ</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>ϕ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. <b>Left:</b> moments of time: <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (blue), <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> (green), <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> (orange). <b>Right:</b> time dependence at space points: <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>2.6</mn> </mrow> </semantics></math> (red), <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>1.8</mn> </mrow> </semantics></math> (green), <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math> (blue), <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (violet).</p> "> Figure A3
<p>Solution (<a href="#FD8-symmetry-16-00189" class="html-disp-formula">A4</a>) for equal frequencies and different phases depending on the space variable at different moments of time (<b>left</b>). The same solution depending on time for different space points (<b>right</b>). The values of parameters: <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>4</mn> <mi>π</mi> <mo>,</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>h</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ξ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ξ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>ξ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <msub> <mi>ϕ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>ϕ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.3</mn> <mi>π</mi> <mo>/</mo> <mn>3</mn> </mrow> </semantics></math>. <b>Left:</b> consecutive moments of time: <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (blue), <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> (green), <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> (orange). <b>Right:</b> dependence on time at different space points: <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>3.1</mn> </mrow> </semantics></math> (red), <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>2.2</mn> </mrow> </semantics></math> (blue), <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>1.8</mn> </mrow> </semantics></math> (green), <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (violet).</p> "> Figure A4
<p>Solution (<a href="#FD8-symmetry-16-00189" class="html-disp-formula">A4</a>) for different frequencies and equal phases depending on time for different points in space. The values of parameters: <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.05</mn> <mo>,</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>4</mn> <mi>π</mi> <mo>,</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>h</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ξ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>ξ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <msub> <mi>ϕ</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>ϕ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, dependence on time at different space points: <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>3.1</mn> </mrow> </semantics></math> (red), <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>2.2</mn> </mrow> </semantics></math> (blue), <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>1.8</mn> </mrow> </semantics></math> (green), <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (violet).</p> "> Figure A5
<p>Solution (<a href="#FD8-symmetry-16-00189" class="html-disp-formula">A4</a>) for different frequencies and phases depending on space variable at different moments in time (<b>left</b>). The same solution depending on time at different space points (<b>right</b>). The values of parameters: <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.05</mn> <mo>,</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>4</mn> <mi>π</mi> <mo>,</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>h</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ξ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>ξ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>ξ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <msub> <mi>ϕ</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <msub> <mi>ϕ</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.3</mn> <mi>π</mi> <mo>/</mo> <mn>3</mn> </mrow> </semantics></math>. <b>Left:</b> consecutive moments of time: <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (blue), <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> (green), <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> (orange). <b>Right:</b> time dependence at different points in space: <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>3.1</mn> </mrow> </semantics></math> (red), <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>2.2</mn> </mrow> </semantics></math> (blue),<math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>1.8</mn> </mrow> </semantics></math> (green), <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (violet).</p> "> Figure A6
<p>(<b>a</b>): Second-order accuracy with <math display="inline"><semantics> <msup> <mi>L</mi> <mn>2</mn> </msup> </semantics></math> norm is obtained for the 3 cases using <math display="inline"><semantics> <msub> <mi>P</mi> <mn>1</mn> </msub> </semantics></math> finite element, (<b>b</b>) number of unknowns of each case of refinement.</p> "> Figure A7
<p>Numerical solution in the 1D case for different refinements, (<b>a</b>) nref = 1, (<b>b</b>) nref = 2, (<b>c</b>) nref = 4, (<b>d</b>) nref = 8.</p> "> Figure A8
<p>Numerical solution in the 2D case for different refinements, (<b>a</b>) nref = 1, (<b>b</b>) nref = 2, (<b>c</b>) nref = 4, (<b>d</b>) nref = 8.</p> "> Figure A8 Cont.
<p>Numerical solution in the 2D case for different refinements, (<b>a</b>) nref = 1, (<b>b</b>) nref = 2, (<b>c</b>) nref = 4, (<b>d</b>) nref = 8.</p> "> Figure A9
<p>Numerical solution in the 3D case (cut of <math display="inline"><semantics> <mrow> <mi>x</mi> <mo><</mo> <mn>0</mn> </mrow> </semantics></math>) for different refinements, (<b>a</b>) nref = 1, (<b>b</b>) nref = 2, (<b>c</b>) nref = 4, (<b>d</b>) nref = 8.</p> "> Figure A10
<p>(<b>a</b>): First-order accuracy with <math display="inline"><semantics> <msup> <mi>H</mi> <mn>1</mn> </msup> </semantics></math> norm is obtained for the 2D and 3D cases using <math display="inline"><semantics> <msub> <mi>P</mi> <mn>1</mn> </msub> </semantics></math> finite element, (<b>b</b>) number of unknowns of each case of refinement.</p> "> Figure A11
<p>Numerical solution in 1D case for nref = 1.</p> "> Figure A12
<p>Numerical solution in 2D case for nref = 4, (<b>a</b>) truncated solution on <math display="inline"><semantics> <mrow> <msup> <mrow> <mi mathvariant="bold">r</mi> </mrow> <mn>2</mn> </msup> <mo>></mo> <msup> <mrow> <mo>(</mo> <mi>R</mi> <mo>/</mo> <mn>40</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math>, (<b>b</b>) full solution.</p> "> Figure A13
<p>Numerical solution in 3D case (cut of <math display="inline"><semantics> <mrow> <mi>x</mi> <mo><</mo> <mn>0</mn> </mrow> </semantics></math>) for nref = 4, (<b>a</b>) truncated solution on <math display="inline"><semantics> <mrow> <msup> <mrow> <mi mathvariant="bold">r</mi> </mrow> <mn>2</mn> </msup> <mo>></mo> <msup> <mrow> <mo>(</mo> <mi>R</mi> <mo>/</mo> <mn>8</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math>, (<b>b</b>) full solution.</p> "> Figure A14
<p>Numerical solution in the 1D case.</p> "> Figure A15
<p>Numerical solution in the 2D case, (<b>a</b>) full solution, (<b>b</b>) truncated solution on the axis x = 0.</p> "> Figure A16
<p>The mesh is adapted around the position of the Diracs.</p> "> Figure A17
<p>Numerical solution in the 3D case, (<b>a</b>) full isosurface solution, (<b>b</b>) truncated solution on the axis x = 0 and z = 0.</p> "> Figure A18
<p>(<b>a</b>) The solution on the boundary of the domain, (<b>b</b>) the mesh is adapted around the position of the Diracs (cut of <math display="inline"><semantics> <mrow> <mi>x</mi> <mo><</mo> <mn>0</mn> </mrow> </semantics></math>).</p> "> Figure A19
<p>(<b>A</b>) Electrode configuration used for EEG recordings. Purple circles represent 30 active scalp contacts + 2 EOG contacts. (<b>B</b>) Preprocessing pipeline.</p> ">
Abstract
:1. Introduction
1.1. Brain Micro-States
1.2. Brain Sources
1.3. Dynamics Determined by Brain Source
2. Modeling EEG Dynamics with Brain Sources
2.1. Formulation of the Model
2.2. Analytical Approximation
2.3. Dynamics on a Sphere
2.3.1. Standing Waves
2.3.2. Rotating Regime
2.3.3. Symmetric Regime
2.4. Dynamics on the Brain Surface (SimNIBS Software)
2.4.1. Software
2.4.2. Regimes of Spatiotemporal Dynamics
2.4.3. Global Field Power (GFP)
2.4.4. Trajectories
3. Spatiotemporal Dynamics in EEG Data
3.1. Data Acquisition and Analysis
3.1.1. Cross-Trial Analysis
3.1.2. Individual Trial Analysis
3.2. Averaged Cross-Trial Dynamics
3.3. Spatiotemporal Regimes in Individual Trial Dynamics
3.3.1. Rotating Regime
3.3.2. Symmetric Regime
3.4. Trajectories
3.5. Moving Waves
4. Discussion
4.1. Mathematical Model
4.2. Dynamics in the Brain Source Model
4.3. Traveling and Moving Waves
4.4. Limitations and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Analytical Solution
Standing Waves and Other Dynamics
Appendix B. Numerical Implementation
Appendix B.1. Laplace Equation Convergence Rate
Appendix B.2. Laplace Equation Convergence Rate with Dirac Right Hand Side
Appendix B.3. Laplace Equation with Dirac Right Hand Side
Appendix C. Data Preprocessing
References
- Adrian, E.D.; Yamagiwa, K. The origin of the Berger rhythm. Brain 1935, 58, 323–351. [Google Scholar] [CrossRef]
- Muller, L.; Chavane, F.; Reynolds, J.; Sejnowsk, T.J. Cortical travelling waves: Mechanisms and computational principles. Nat. Rev. Neurosci. 2018, 19, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Baese, L.; Watters, H.; Keilholz, S. Spatiotemporal patterns of spontaneous brain activity: A mini-review. Neurophotonics 2022, 9, 032209. [Google Scholar] [CrossRef]
- Klimesch, W.; Hanslmayr, S.; Sauseng, P.; Gruber, W.R.; Doppelmayr, M. P1 and Traveling Alpha Waves: Evidence for Evoked Oscillations. J. Neurophysiol. 2007, 97, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Patten, T.M.; Rennie, C.J.; Robinson, P.A.; Gong, P. Human Cortical Traveling Waves: Dynamical Properties and Correlations with Responses. PLoS ONE 2012, 7, e38392. [Google Scholar] [CrossRef] [PubMed]
- Massimini, M.; Huber, R.; Ferrarelli, F.; Hill, S.; Tononi, G. The Sleep Slow Oscillation as a Traveling Wave. J. Neurosci. 2004, 24, 6862–6870. [Google Scholar] [CrossRef] [PubMed]
- Alamia, A.; VanRullen, R. Alpha oscillations and traveling waves: Signatures of predictive coding? PLoS Biol. 2019, 17, e3000487. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.K.; Nauhaus, I.; Carandini, M. Traveling Waves in Visual Cortex Neuron 2012, 75, 218–229. 75.
- Zauner, A.; Gruber, W.; Himmelstoß, N.A.; Lechinger, J.; Klimesch, W. Lexical access and evoked traveling alpha waves. NeuroImage 2014, 91, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Benitez-Burraco, A.; Murphy, E. Why Brain Oscillations Are Improving Our Understanding of Language. Front. Behav. Neurosci. 2019, 13, 190. [Google Scholar] [CrossRef]
- Alexander, D.M.; Jurica, P.; Trengove, C.; Nikolaev, A.R.; Gepshtein, S.; Zvyagintsev, M.; Mathiak, K.; Schulze-Bonhage, A.; Ruscher, J.; Ball, T.; et al. Traveling waves and trial averaging: The nature of single-trial and averaged brain responses in large-scale cortical signals. NeuroImage 2013, 73, 95–112. [Google Scholar] [CrossRef]
- Nir, Y.; Staba, R.J.; Andrillon, T.; Vyazovskiy, V.V.; Cirelli, C.; Fried, I.; Tononi, G. Regional Slow Waves and Spindles in Human Sleep. Neuron 2011, 70, 153–169. [Google Scholar] [CrossRef]
- Muller, L.; Piantoni, G.; Koller, D.; Cash, S.S.; Halgren, E.; Sejnowski, T.J. Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night. eLife 2016, 5, e17267. [Google Scholar] [CrossRef]
- Huang, X.; Xu, W.; Liang, J.; Takagaki, K.; Gao, X.; Wu, J. Spiral Wave Dynamics in Neocortex. Neuron 2010, 68, 978–990. [Google Scholar] [CrossRef]
- Lehmann, D.; Ozaki, H.; Pal, I. EEG alpha map series: Brain micro-states by space-oriented adaptive segmentation. Electroencephalogr. Clin. Neurophysiol. 1987, 67, 271–288. [Google Scholar] [CrossRef]
- Koenig, T.; Lehmann, D.; Merlo, M.C.G.; Kochi, K.; Hell, D.; Koukkou, M. A deviant EEG brain microstate in acute, neuroleptic-naive schizophrenics at rest. Eur. Arch. Psychiatry Clin. Neurosci. 1999, 249, 205–211. [Google Scholar] [CrossRef] [PubMed]
- De Menendez, R.G.; Murray, M.M.; Michel, C.M.; Martuzzi, R.; Andino, S.L.G. Electrical neuroimaging based on biophysical constraints. NeuroImage 2004, 21, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Zotev, V.; Phillips, R.; Drevets, W.C.; Bodurka, J. Spatiotemporal dynamics of the brain at rest—Exploring EEG microstates as electrophysiological signatures of BOLD resting state networks. NeuroImage 2012, 60, 2062–2072. [Google Scholar] [CrossRef] [PubMed]
- Brechet, L.; Brunet, D.; Birot, G.; Gruetter, R.; Michel, C.M.; Jorge, J. Capturing the spatiotemporal dynamics of self-generated, task-initiated thoughts with EEG and fMRI. NeuroImage 2019, 194, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Benquet, P.; Biraben, A.; Berrou, C.; Dufor, O.; Wendling, F. Dynamic reorganization of functional brain networks during picture naming. Cortex 2015, 73, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Grappe, A.; Sarma, S.V.; Sacre, P.; Gonzalez-Martınez, J.; Liegeois-Chauvel, C.; Alario, F.-X. An intracerebral exploration of functional connectivity during word production. J. Comput. Neurosci. 2018, 46, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Hartwigsen, G.; Stockert, A.; Charpentier, L.; Wawrzyniak, M.; Klingbeil, J.; Wrede, K.; Obrig, H.; Saur, D. Short-term modulation of the lesioned language network. eLife 2020, 9, e54277. [Google Scholar] [CrossRef]
- Laganaro, M.; Python, G.; Toepel, U. Dynamics of phonological–phonetic encoding in word production: Evidence from diverging ERPs between stroke patients and controls. Brain Lang. 2013, 126, 123–132. [Google Scholar] [CrossRef]
- Mheich, A.; Dufor, O.; Yassine, S.; Kabbara, A.; Biraben, A.; Wendling, F.; Hassan, M. HD-EEG for tracking sub-second brain dynamics during cognitive tasks. Sci. Data 2021, 8, 32. [Google Scholar] [CrossRef]
- Hooi, L.S.; Nisar, H.; Voon, Y.V. Tracking of EEG Activity using Topographic Maps. In Proceedings of the 2015 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Lumpur, Malaysia, 19–21 October 2015. [Google Scholar]
- Wackermann, J.; Lehmann, D.; Michel, C.M.; Strik, W.K. Adaptive segmentation of spontaneous EEG map series into spatially defined microstates. Int. J. Psychophysiol. 1993, 14, 269–283. [Google Scholar] [CrossRef]
- Buzsaki, G.; Anastassiou, C.A.; Koch, C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 2016, 13, 407–420. [Google Scholar] [CrossRef]
- Jatoi, M.A.; Kamel, N. Brain Source Localization Using EEG Signal Analysis; Taylor & Francis Group: Boca Raton, FL, USA, 2018. [Google Scholar]
- Saturnino, G.B.; Siebner, H.R.; Thielscher, A.; Madsen, K.H. Accessibility of cortical regions to focal tes: Dependence on spatial position, safety, and practical constraints. NeuroImage 2019, 203, 116183. [Google Scholar] [CrossRef] [PubMed]
- Saturnino, G.B.; Madsen, K.H.; Siebner, H.R.; Thielscher, A. How to target inter-regional phase synchronization with dual-site Transcranial Alternating Current Stimulation. NeuroImage 2017, 163, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Saturnino, G.B.; Puonti, O.; Nielsen, J.D.; Antonenko, D.; Madsen, K.H.; Thielscher, A. Simnibs 2.1: A comprehensive pipeline for individualized electric field modelling for transcranial brain stimulation. In Brain and Human Body Modeling; Makarov, S., Horner, M., Noetscher, G., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Volpert, V.; Xu, B.; Tchechmedjiev, A.; Harispe, S.; Aksenov, A.; Mesnildrey, Q.; Beuter, A. Characterization of spatiotemporal dynamics in EEG data during picture naming with optical flow patterns. Math. Biosci. Eng. 2023, 20, 11429–11463. [Google Scholar] [CrossRef] [PubMed]
- Aksenov, A.; Renaud-D’Ambra, M.; Volpert, V.; Beuter, A. Phase-shifted tACS can modulate cortical alpha waves in human subjects. Cogn. Neurodynamics 2023, in press. [Google Scholar] [CrossRef]
- Lehmann, D.; Skrandies, W. Reference-free identification of components of checkerboardevoked multichannel potential fields. Electroencephalogr. Clin. Neurophysiol. 1980, 48, 609–621. [Google Scholar] [CrossRef]
- Lehmann, D.; Skrandies, W. Spatial Analysis of Evoked Potentials in Man—A review. Prog. Neurobiol. 1984, 23, 227–250. [Google Scholar] [CrossRef]
- Murray, M.M.; Brunet, D.; Michel, C.M. Topographic ERP analyses: A step-by-step tutorial review. Brain Topogr. 2008, 20, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Chantsoulis, M.; Polrola, P.; Goral-Polrola, J.; Hajdukiewicz, A.; Supinski, J.; Kropotov, J.D.; Pachalska, M. Application of ERPs neuromarkers for assessment and treatment of a patient with chronic crossed aphasia after severe TBI and long-term coma—Case report. Ann. Agric. Environ. Med. 2017, 24, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Laganaro, M. Inter-study and inter-Individual Consistency and Variability of EEG/ERP Microstate Sequences in Referential Word Production. Brain Topogr. 2017, 30, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Ermentrout, G.B.; Kleinfeld, D. Traveling Electrical Waves in Cortex: Insights from Phase Dynamics and Speculation on a Computational Role the results. Neuron 2001, 29, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Watrous, A.; Patel, A.; Jacobs, J. Theta and Alpha Oscillations Are Traveling Waves in the Human Neocortex. Neuron 2018, 98, 1269–1281. [Google Scholar] [CrossRef] [PubMed]
- Mheich, A.; Hassan, M.; Khalil, M.; Berrou, C.; Wendling, F. A new algorithm for spatiotemporal analysis of brain functional connectivity. J. Neurosci. Methods 2015, 242, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Hecht, F. New developments in Freefem++. Journal of Numerical Mathematics 2012, 20, 251–266. [Google Scholar] [CrossRef]
- Dapogny, C.; Dobrzynski, C.; Frey, P. Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems. J. Comput. Phys. 2014, 262, 358–378. [Google Scholar] [CrossRef]
- Scott, R. Finite element convergence for singular data. J. Numer. Math. 1973, 21, 317–327. [Google Scholar] [CrossRef]
- Bradji, A.; Holzbecher, E. On the Convergence Order in Sobolev Norms of COMSOL Solutions; WIAS: Berlin, Germany, 2008. [Google Scholar]
- Brainard, D.H. The Psychophysics Toolbox; Brill: Leiden, The Netherlands, 1997. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volpert, V.; Sadaka, G.; Mesnildrey, Q.; Beuter, A. Modelling EEG Dynamics with Brain Sources. Symmetry 2024, 16, 189. https://doi.org/10.3390/sym16020189
Volpert V, Sadaka G, Mesnildrey Q, Beuter A. Modelling EEG Dynamics with Brain Sources. Symmetry. 2024; 16(2):189. https://doi.org/10.3390/sym16020189
Chicago/Turabian StyleVolpert, Vitaly, Georges Sadaka, Quentin Mesnildrey, and Anne Beuter. 2024. "Modelling EEG Dynamics with Brain Sources" Symmetry 16, no. 2: 189. https://doi.org/10.3390/sym16020189
APA StyleVolpert, V., Sadaka, G., Mesnildrey, Q., & Beuter, A. (2024). Modelling EEG Dynamics with Brain Sources. Symmetry, 16(2), 189. https://doi.org/10.3390/sym16020189