Generalized χ and η Cross-Helicities in Non-Ideal Magnetohydrodynamics
Abstract
:1. Introduction
2. Standard Formulation of Non-Ideal Non-Barotropic MHD
3. Direct Derivation of the Constancy of Non-Barotropic Cross-Helicity
4. Direct Derivation of the Constancy of Non-Barotropic Cross-Helicity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Matthaeus, W.H.; Goldstein, M.L.; Smith, C. Evaluation of Magnetic Helicity in Homogeneous Turbulence. Phys. Rev. Lett. 1982, 48, 1256–1259. [Google Scholar] [CrossRef]
- Montgomery, D.; Turner, L. Two-and-a-half-dimensional magnetohydrodynamic turbulence. Phys. Fluids 1982, 25, 345–349. [Google Scholar] [CrossRef]
- Bruno, R.; Carbone, V. The Solar Wind as a Turbulence Laboratory. Living Rev. Sol. Phys. 2013, 10, 2. [Google Scholar] [CrossRef]
- Yahalom, A.; Lynden-Bell, D. Simplified variational principles for barotropic magnetohydrodynamics. J. Fluid Mech. 2008, 607, 235. [Google Scholar] [CrossRef]
- Yahalom, A. Aharonov–Bohm effects in magnetohydrodynamics. Phys. Lett. A 2013, 377, 1898–1904. [Google Scholar] [CrossRef]
- Yahalom, A. Helicity conservation via the Noether theorem. J. Math. Phys. 1995, 36, 1324–1327. [Google Scholar] [CrossRef]
- Woltjer, L. A theorem on force-free magnetic fields. Proc. Natl. Acad. Sci. USA 1958, 44, 489. [Google Scholar] [CrossRef]
- Woltjer, L. On hydromagnetic equilibrium. Proc. Natl. Acad. Sci. USA 1958, 44, 833. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, G. An Introduction to Fluid Dynamics; Cambridge University Press: Cambridge, UK, 1970. [Google Scholar]
- Yokoi, N. Mass and internal-energy transports in strongly compressible magnetohydrodynamic turbulence. J. Plasma Phys. 2018, 84, 775840603. [Google Scholar] [CrossRef]
- Webb, G.; Dasgupta, B.; McKenzie, J.; Hu, Q.; Zank, G. Local and nonlocal advected invariants and helicities in magnetohydrodynamics and gas dynamics I: Lie dragging approach. J. Phys. A Math. Theor. 2014, 47, 095501. [Google Scholar] [CrossRef]
- Webb, G.; Dasgupta, B.; McKenzie, J.; Hu, Q.; Zank, G. Local and nonlocal advected invariants and helicities in magnetohydrodynamics and gas dynamics: II. Noether’s theorems and Casimirs. J. Phys. A Math. Theor. 2014, 47, 095502. [Google Scholar] [CrossRef]
- Mobbs, S. Some vorticity theorems and conservation laws for non-barotropic fluids. J. Fluid Mech. 1981, 108, 475–483. [Google Scholar] [CrossRef]
- Webb, G.; McKenzie, J.; Zank, G. Multi-symplectic magnetohydrodynamics: II, addendum and erratum. J. Plasma Phys. 2015, 81, 905810610. [Google Scholar] [CrossRef]
- Webb, G.; Mace, R. Potential vorticity in magnetohydrodynamics. J. Plasma Phys. 2015, 81, 905810115. [Google Scholar] [CrossRef]
- Yahalom, A.; Qin, H. Noether currents for Eulerian variational principles in non-barotropic magnetohydrodynamics and topological conservations laws. J. Fluid Mech. 2021, 908, A4. [Google Scholar] [CrossRef]
- Hazeltine, R.D.; Meiss, J.D. Plasma Confinement; Courier Corporation: Chelmsford, MA, USA, 2003. [Google Scholar]
- Lynden-Bell, D.; Katz, J. Isocirculational Flows and their Lagrangian and Energy principles. Proc. R. Soc. Lond. A Math. Phys. Sci. 1981, 378, 179–205. [Google Scholar]
- Vladimirov, V.A.; Moffatt, H. On general transformations and variational principles for the magnetohydrodynamics of ideal fluids. Part 1. Fundamental principles. J. Fluid Mech. 1995, 283, 125–139. [Google Scholar] [CrossRef]
- Yahalom, A. A conserved local cross helicity for non-barotropic MHD. Geophys. Astrophys. Fluid Dyn. 2017, 111, 131–137. [Google Scholar] [CrossRef]
- Yahalom, A. Metage symmetry group of non-barotropic magnetohydrodynamics and the conservation of cross helicity. In Proceedings of the Quantum Theory and Symmetries; Springer: Berlin/Heidelberg, Germany, 2017; pp. 387–402. [Google Scholar]
- Yokoi, N. Cross helicity and related dynamo. Geophys. Astrophys. Fluid Dyn. 2013, 107, 114–184. [Google Scholar] [CrossRef]
- Zhou, Y.; Matthaeus, W.H. Transport and turbulence modeling of solar wind fluctuations. J. Geophys. Res. Space Phys. 1990, 95, 10291–10311. [Google Scholar] [CrossRef]
- Zhou, Y.; Matthaeus, W.H. Models of inertial range spectra of interplanetary magnetohydrodynamic turbulence. J. Geophys. Res. Space Phys. 1990, 95, 14881–14892. [Google Scholar] [CrossRef]
- Zank, G.; Dosch, A.; Hunana, P.; Florinski, V.; Matthaeus, W.; Webb, G. The transport of low-frequency turbulence in astrophysical flows. I. Governing equations. Astrophys. J. 2011, 745, 35. [Google Scholar] [CrossRef]
- Iovieno, M.; Gallana, L.; Fraternale, F.; Richardson, J.; Opher, M.; Tordella, D. Cross and magnetic helicity in the outer heliosphere from Voyager 2 observations. Eur. J. Mech.-B/Fluids 2016, 55, 394–401. [Google Scholar] [CrossRef]
- Verma, M.K. Statistical theory of magnetohydrodynamic turbulence: Recent results. Phys. Rep. 2004, 401, 229–380. [Google Scholar] [CrossRef]
- Verma, M.; Sharma, M.; Chatterjee, S.; Alam, S. Variable energy fluxes and exact relations in Magnetohydrodynamics turbulence. Fluids 2021, 6, 225. [Google Scholar] [CrossRef]
- Verma, M.K. Energy Transfers in Fluid Flows: Multiscale and Spectral Perspectives; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Faraco, D.; Lindberg, S. Proof of Taylor’s conjecture on magnetic helicity conservation. Commun. Math. Phys. 2020, 373, 707–738. [Google Scholar] [CrossRef]
- Barnes, C.W.; Fernandez, J.; Henins, I.; Hoida, H.; Jarboe, T.; Knox, S.; Marklin, G.; McKenna, K. Experimental determination of the conservation of magnetic helicity from the balance between source and spheromak. Phys. Fluids 1986, 29, 3415–3432. [Google Scholar] [CrossRef]
- Candelaresi, S.; Del Sordo, F. Stability of plasmas through magnetic helicity. arXiv 2021, arXiv:2112.01193. [Google Scholar]
- Knizhnik, K.J.; Antiochos, S.K.; Klimchuk, J.A.; DeVore, C.R. The role of magnetic helicity in coronal heating. Astrophys. J. 2019, 883, 26. [Google Scholar] [CrossRef]
- Sharma, P.; Yahalom, A. Generalized cross-helicity in non-ideal magnetohydrodynamics. J. Plasma Phys. 2023, 89, 905890604. [Google Scholar] [CrossRef]
- Sturrock, P.A. Plasma Physics: An Introduction to the Theory of Astrophysical, Geophysical and Laboratory Plasmas; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Landau, L.; Lifshitz, E. Chapter V—Thermal conduction in fluids. In Fluid Mechanics, 2nd ed.; Landau, L., Lifshitz, E., Eds.; Butterworth-Heinemann: Pergamon, Turkey, 1987; pp. 192–226. [Google Scholar] [CrossRef]
- Ogilvie, G.I. Astrophysical fluid dynamics. J. Plasma Phys. 2016, 82. [Google Scholar] [CrossRef]
- Heinonen, R.; Diamond, P.; Katz, M.; Ronimo, G. On the role of cross-helicity in β-plane magnetohydrodynamic turbulence. arXiv 2021, arXiv:2103.08091. [Google Scholar]
- Perez, J.C.; Boldyrev, S. Role of cross-helicity in magnetohydrodynamic turbulence. Phys. Rev. Lett. 2009, 102, 025003. [Google Scholar] [CrossRef] [PubMed]
- Goldreich, P.; Sridhar, S. Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence. Astrophys. J. 1995, 438, 763–775. [Google Scholar] [CrossRef]
- Mizeva, I.; Stepanov, R.; Frik, P. The cross-helicity effect on cascade processes in MHD turbulence. Dokl. Phys. 2009, 54, 93–97. [Google Scholar] [CrossRef]
- Briard, A.; Gomez, T. The decay of isotropic magnetohydrodynamics turbulence and the effects of cross-helicity. J. Plasma Phys. 2018, 84. [Google Scholar] [CrossRef]
- Kleeorin, N.; Rogachevskii, I. Turbulent magnetic helicity fluxes in solar convective zone. Mon. Not. R. Astron. Soc. 2022, 515, 5437–5448. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, P.; Yahalom, A. Generalized χ and η Cross-Helicities in Non-Ideal Magnetohydrodynamics. Symmetry 2023, 15, 2203. https://doi.org/10.3390/sym15122203
Sharma P, Yahalom A. Generalized χ and η Cross-Helicities in Non-Ideal Magnetohydrodynamics. Symmetry. 2023; 15(12):2203. https://doi.org/10.3390/sym15122203
Chicago/Turabian StyleSharma, Prachi, and Asher Yahalom. 2023. "Generalized χ and η Cross-Helicities in Non-Ideal Magnetohydrodynamics" Symmetry 15, no. 12: 2203. https://doi.org/10.3390/sym15122203
APA StyleSharma, P., & Yahalom, A. (2023). Generalized χ and η Cross-Helicities in Non-Ideal Magnetohydrodynamics. Symmetry, 15(12), 2203. https://doi.org/10.3390/sym15122203