Coarse–Fine Registration of Point Cloud Based on New Improved Whale Optimization Algorithm and Iterative Closest Point Algorithm
<p>(<b>a</b>) bun000; (<b>b</b>) bun045.</p> "> Figure 2
<p>(<b>a</b>) dragonBk1_0; (<b>b</b>) dragonBk4_0.</p> "> Figure 3
<p>(<b>a</b>) ArmadilloOnHeadMultipleOffset_15; (<b>b</b>) ArmadilloOnHeadMultipleOffset_45.</p> "> Figure 4
<p>(<b>a</b>) happyBkgd3_0; (<b>b</b>) happyBkgd4_0.</p> "> Figure 5
<p>(<b>a</b>) sun3d-hotel_umd-maryland_hotel3 cloud_bin_35; (<b>b</b>) sun3d-hotel_umd-maryland_hotel3 cloud_bin_36.</p> "> Figure 6
<p>Coarse registration results based on WOA (<b>a</b>) and NIWOA (<b>b</b>) for point cloud bun000 and bun045.</p> "> Figure 7
<p>Coarse registration results based on WOA (<b>a</b>) and NIWOA (<b>b</b>) for point cloud dragonBk1_0 and dragonBk4_0.</p> "> Figure 8
<p>Coarse registration results based on WOA (<b>a</b>) and NIWOA (<b>b</b>) for point cloud ArmadilloOnHeadMultipleOffset_15 and ArmadilloOnHeadMultipleOffset_45.</p> "> Figure 9
<p>Coarse registration results based on WOA (<b>a</b>) and NIWOA (<b>b</b>) for point cloud happyBkgd3_0 and happyBkgd4_0.</p> "> Figure 10
<p>Coarse registration results based on WOA (<b>a</b>) and NIWOA (<b>b</b>) for point cloud sun3d-hotel_umd-maryland_hotel3 cloud_bin_35 and sun3d-hotel_umd-maryland_hotel3 cloud_bin_36.</p> "> Figure 11
<p>Coarse–fine registration process of point cloud bun000 and bun045 and convergence curve of the registration error of the NIWOA and ICP algorithms. (<b>a</b>) original input point cloud, (<b>b</b>) coarse registration based on the NIWOA, (<b>c</b>) fine registration using ICP on the basis of coarse registration, (<b>d</b>) final result of mapping the final calculated coordinate transformation parameters to the input point cloud to be registered, (<b>e</b>) error convergence curve of the coarse registration by using NIWOA, (<b>f</b>) convergence curve of the error transformation with the iterations in the ICP fine registration process.</p> "> Figure 12
<p>Coarse–fine registration process of point cloud dragonBk1_0 and dragonBk4_0 and convergence curve of the registration error of the NIWOA and ICP algorithms. (<b>a</b>) original input point cloud, (<b>b</b>) coarse registration based on the NIWOA, (<b>c</b>) fine registration using ICP on the basis of coarse registration, (<b>d</b>) final result of mapping the final calculated coordinate transformation parameters to the input point cloud to be registered, (<b>e</b>) error convergence curve of the coarse registration by using NIWOA, (<b>f</b>) convergence curve of the error transformation with the iterations in the ICP fine registration process.</p> "> Figure 13
<p>Coarse–fine registration process of point cloud ArmadilloOnHeadMultipleOffset_15 and ArmadilloOnHeadMultipleOffset_45 and convergence curve of the registration error of the NIWOA and ICP algorithms. (<b>a</b>) original input point cloud, (<b>b</b>) coarse registration based on the NIWOA, (<b>c</b>) fine registration using ICP on the basis of coarse registration, (<b>d</b>) final result of mapping the final calculated coordinate transformation parameters to the input point cloud to be registered, (<b>e</b>) error convergence curve of the coarse registration by using NIWOA, (<b>f</b>) convergence curve of the error transformation with the iterations in the ICP fine registration process.</p> "> Figure 14
<p>Coarse–fine registration process of point cloud happyBkgd3_0 and happyBkgd4_0 and convergence curve of the registration error of the NIWOA and ICP algorithms. (<b>a</b>) original input point cloud, (<b>b</b>) coarse registration based on the NIWOA, (<b>c</b>) fine registration using ICP on the basis of coarse registration, (<b>d</b>) final result of mapping the final calculated coordinate transformation parameters to the input point cloud to be registered, (<b>e</b>) error convergence curve of the coarse registration by using NIWOA, (<b>f</b>) convergence curve of the error transformation with the iterations in the ICP fine registration process.</p> "> Figure 15
<p>Coarse–fine registration process of point cloud sun3d-hotel_umd-maryland_hotel3 cloud_bin_35 and sun3d-hotel_umd-maryland_hotel3 cloud_bin_36 and convergence curve of the registration error of the NIWOA and ICP algorithms. (<b>a</b>) original input point cloud, (<b>b</b>) coarse registration based on the NIWOA, (<b>c</b>) fine registration using ICP on the basis of coarse registration, (<b>d</b>) final result of mapping the final calculated coordinate transformation parameters to the input point cloud to be registered, (<b>e</b>) error convergence curve of the coarse registration by using NIWOA, (<b>f</b>) convergence curve of the error transformation with the iterations in the ICP fine registration process.</p> ">
Abstract
:1. Introduction
- Optimization problems and related research in point cloud registration
- Research on the whale optimization algorithm (WOA) and related improvements
- Coarse–fine registration of point cloud based on new improved whale optimization algorithm (NIWOA) and iterative closest point (ICP) algorithm
2. Principle and Processing Operation of Point Cloud Registration
2.1. Principle of Point Cloud Registration
2.2. Point Cloud Data Preprocessing
- (a)
- Suppose there are n points in point cloud P, and the coordinate of any point is , ;
- (b)
- The local coordinate system is established for each point in the point cloud, and the search radius r of each point is set;
- (c)
- Query all points of each point in the point cloud data within the radius r; j is the number of neighborhood points, and calculate the weight as follows:
- (d)
- Calculate the covariance matrix for each point :
- (e)
- Compute the eigenvalues of the covariance matrix for each point and sort them in descending order;
- (f)
- Set two thresholds and as not greater than 1; the points satisfying the following equation will be marked as ISS feature points.
2.3. Feature Description and Matching
3. The Classic Whale Optimization Algorithm
3.1. Mathematical Model of Encircling Prey
3.2. Mathematical Model of Bubble Net Attack
3.2.1. Shrinking Encircling Mechanism
3.2.2. Spiral Updating Position Mechanism
3.2.3. Mathematical Model of the Search Prey Phase
4. New Improved Whale Optimization Algorithm
4.1. Population Initialization Based on Circle Chaotic Map
4.2. Newton Inertia Weight
4.3. Nonlinear Convergence Factor
5. Point Cloud Registration Based on NIWOA and ICP
5.1. Optimization Model for Coarse Registration of Point Clouds Based on NIWOA
5.2. Fine Registration of Point Clouds Based on ICP Algorithm
6. Registration Experiments and Result Analysis
6.1. Experimental Instructions and Setup
6.2. Experiments on Coarse Registration of Point Clouds
6.3. Experiments on Coarse–Fine Registration of Point Clouds
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Buonamici, F.; Carfagni, M.; Furferi, R.; Governi, L.; Lapini, A.; Volpe, Y. Reverse engineering of mechanical parts: A template-based approach. J. Comput. Des. Eng. 2018, 5, 145–159. [Google Scholar] [CrossRef]
- Yanamandra, K.; Chen, G.L.; Xu, X.; Mac, G.; Gupta, N. Reverse engineering of additive manufactured composite part by toolpath reconstruction using imaging and machine learning. Compos. Sci. Technol. 2020, 198, 108318. [Google Scholar] [CrossRef]
- Raffo, A.; Barrowclough, O.J.D.; Muntingh, G. Reverse engineering of CAD models via clustering and approximate implicitization. Comput. Aided Geom. Des. 2020, 80, 101876. [Google Scholar] [CrossRef]
- Zheng, L.; Chen, S.; Chen, X.; Ji, S. Reverse Engineering-Inspired Parametric 3D Geometry Model of Marine Propeller. Pol. Marit. Res. 2023, 30, 35–47. [Google Scholar] [CrossRef]
- Dong, Z.; Wu, X.; Ma, Z. Research on 3D model reconstruction based on a sequence of cross-sectional images. Mach. Vis. Appl. 2021, 32, 92. [Google Scholar] [CrossRef]
- Song, L.; Jiang, Q.; Zhong, Z.; Dai, F.; Wang, G.; Wang, X.; Han, G.; Zhang, D. Technical path of model reconstruction and shear wear analysis for natural joint based on 3D scanning technology. Measurement 2022, 188, 110584. [Google Scholar] [CrossRef]
- Peng, Y.; Lin, S.; Wu, H.; Cao, G. Point Cloud Registration Based on Fast Point Feature Histogram Descriptors for 3D Reconstruction of Trees. Remote Sens. 2023, 15, 3775. [Google Scholar] [CrossRef]
- Zou, Z.; Lang, H.; Lou, Y.; Lu, J. Plane-based global registration for pavement 3D reconstruction using hybrid solid-state LiDAR point cloud. Autom. Constr. 2023, 152, 104907. [Google Scholar] [CrossRef]
- Besl, P.J.; Mckay, N.D. A method for registration of 3D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Yang, X.S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010); Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74. [Google Scholar]
- Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Engineering Optimisation by Cuckoo Search. Int. J. Math. Model. Numer. Optim. 2010, 1, 330–343. [Google Scholar] [CrossRef]
- Mehrabian, A.R.; Lucas, C. A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform. 2006, 1, 355–366. [Google Scholar] [CrossRef]
- Shi, X.; Liu, T.; Han, X. Improved Iterative Closest Point (ICP) 3D point cloud registration algorithm based on point cloud filtering and adaptive fireworks for coarse registration. Int. J. Remote Sens. 2020, 41, 3197–3220. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, H.D.; Zhang, W. Research on Intelligent Minefield Attack Decision Based on Adaptive Fireworks Algorithm. Arab. J. Sci. Eng. 2019, 44, 2487–2496. [Google Scholar]
- Zhan, X.; Cai, Y.; He, P. A three-dimensional point cloud registration based on entropy and particle swarm optimization. Adv. Mech. Eng. 2018, 10, 1687814018814330. [Google Scholar] [CrossRef]
- Feng, Y.; Tang, J.; Su, B.; Zhou, Z. Point cloud registration algorithm based on the grey wolf optimizer. IEEE Access 2020, 8, 143375–143382. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Liu, D.; Hong, D.; Wang, S.; Chen, C. Genetic Algorithm-Based Optimization for Color Point Cloud Registration. Front. Bioeng. Biotechnol. 2022, 10, 923736. [Google Scholar] [CrossRef]
- Chen, L.; Kuang, W.; Fu, K. A resample strategy and artificial bee colony optimization-based 3d range imaging registration. Comput. Vis. Image Underst. 2018, 175, 44–51. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Chakraborty, S.; Saha, A.K.; Chakraborty, R.; Saha, M. An enhanced whale optimization algorithm for large scale optimization problems. Knowl.-Based Syst. 2021, 233, 107543. [Google Scholar] [CrossRef]
- Liu, M.; Yao, X.; Li, Y. Hybrid whale optimization algorithm enhanced with Lévy flight and differential evolution for job shop scheduling problems. Appl. Soft Comput. 2020, 87, 105954. [Google Scholar] [CrossRef]
- Luo, J.; Shi, B. A hybrid whale optimization algorithm based on modified differential evolution for global optimization problems. Appl. Intell. 2019, 49, 1982–2000. [Google Scholar] [CrossRef]
- Li, Y.; Han, M.; Guo, Q. Modified whale optimization algorithm based on tent chaotic mapping and its application in structural optimization. KSCE J. Civ. Eng. 2020, 24, 3703–3713. [Google Scholar] [CrossRef]
- Anitha, J.; Pandian, S.I.A.; Agnes, S.A. An efficient multilevel color image thresholding based on modified whale optimization algorithm. Expert Syst. Appl. 2021, 178, 115003. [Google Scholar] [CrossRef]
- Lin, X.; Yu, X.; Li, W. A heuristic whale optimization algorithm with niching strategy for global multi-dimensional engineering optimization. Comput. Ind. Eng. 2022, 171, 108361. [Google Scholar] [CrossRef]
- Saha, N.; Panda, S. Cosine adapted modified whale optimization algorithm for control of switched reluctance motor. Comput. Intell. 2022, 38, 978–1017. [Google Scholar] [CrossRef]
- Yang, W.; Xia, K.; Fan, S.; Wang, L.; Li, T.; Zhang, J.; Feng, Y. A multi-strategy Whale optimization algorithm and its application. Eng. Appl. Artif. Intell. 2022, 108, 104558. [Google Scholar] [CrossRef]
- Chakraborty, S.; Saha, A.K.; Chakraborty, R.; Saha, M.; Nama, S. HSWOA: An ensemble of hunger games search and whale optimization algorithm for global optimization. Int. J. Intell. Syst. 2022, 37, 52–104. [Google Scholar] [CrossRef]
- Li, G.; Cui, Y.; Wang, L.; Meng, L. Automatic registration algorithm for the point clouds based on the optimized RANSAC and IWOA algorithms for robotic manufacturing. Appl. Sci. 2022, 12, 9461. [Google Scholar] [CrossRef]
- Zhong, Y. Intrinsic shape signatures: A shape descriptor for 3D object recognition. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan, 27 September–4 October 2009; pp. 689–696. [Google Scholar]
- Rusu, R.B.; Blodow, N.; Marton, Z.C.; Beetz, M. Aligning Point Cloud Views using Persistent Feature Histograms. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 3384–3391. [Google Scholar]
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- The Stanford 3D Scanning Repository. Available online: http://graphics.stanford.edu/data/3Dscanrep/ (accessed on 19 August 2014).
- Zeng, A.; Song, S.; Nießner, M.; Fisher, M.; Xiao, J.; Funkhouser, T. 3dmatch: Learning local geometric descriptors from rgb-d reconstructions. In Proceedings of the of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1802–1811. [Google Scholar]
- Halber, M.; Funkhouser, T. Fine-to-coarse global registration of rgb-d scans. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1755–1764. [Google Scholar]
Registration Method | Method Description | Accuracy and Efficiency |
---|---|---|
ICP | The registration of the point cloud data is performed directly without initial pose estimation | low |
WOA + ICP | WOA is used for coarse registration optimization followed by ICP fine registration | medium |
NIWOA + ICP | NIWOA is used to optimize the coarse registration to obtain a more accurate initial pose of the point cloud, and then ICP fine registration is performed | high |
Point Cloud Model | Number of Points |
---|---|
bun000 | 39,937 |
bun045 | 39,974 |
dragonBk1_0 | 47,747 |
dragonBk4_0 | 44,832 |
ArmadilloOnHeadMultipleOffset_15 | 32,208 |
ArmadilloOnHeadMultipleOffset_45 | 24,764 |
happyBkgd3_0 | 83,327 |
happyBkgd4_0 | 79,802 |
sun3dhotel_umdmaryland_hotel3 cloud_bin_35 | 75,521 |
sun3dhotel_umdmaryland_hotel3 cloud_bin_36 | 151,564 |
Point Cloud Model | WOA | NIWOA |
---|---|---|
bun000 and bun045 | 54.971 × 10–3 | 4.3481 × 10–3 |
dragonBk1_0 and dragonBk4_0 | 3.6750 × 10–3 | 1.7964 × 10–3 |
ArmadilloOnHeadMultipleOffset_15 and 45 | 2.9120 × 10–3 | 0.9347 × 10–3 |
happyBkgd3_0 and happyBkgd4_0 | 49.537 × 10–3 | 1.3966 × 10–3 |
sun3d-hotel_umd-maryland_hotel3 cloud_bin_35 and 36 | 93.479 × 10–3 | 48.141 × 10–3 |
Point Cloud Model | WOA + ICP | NIWOA + ICP | ||
---|---|---|---|---|
RMSE | MAE | RMSE | MAE | |
bun000 and bun045 | 0.2137 × 10–3 | 0.1796 × 10–3 | 0.1830 × 10–3 | 0.1596 × 10–3 |
dragonBk1_0 and dragonBk4_0 | 0.4564 × 10–3 | 0.3835 × 10–3 | 0.3991 × 10–3 | 0.3557 × 10–3 |
ArmadilloOnHeadMultipleOffset_15 and 45 | 2.2423 × 10–3 | 1.7998 × 10–3 | 1.6007 × 10–3 | 1.4047 × 10–3 |
happyBkgd3_0 and happyBkgd4_0 | 1.2529 × 10–3 | 0.9981 × 10–3 | 1.5877 × 10–3 | 0.8737 × 10–3 |
sun3d-hotel_umd-maryland_hotel3 cloud_bin_35 and 36 | 6.0036 × 10–3 | 5.8355 × 10–3 | 1.8908 × 10–3 | 1.7002 × 10–3 |
Transformation | Rotation Angle | Translation Parameter |
---|---|---|
1 | 0.02, 0.02, 0 | |
2 | 0.02, 0.02, 0 | |
3 | 0.02, 0.02, 0.02 | |
4 | 0.04, 0.04, 0.04 | |
5 | −0.02, −0.02, 0.02 | |
6 | 0.04, −0.04, −0.04 | |
7 | 0.02, 0.02, 0.02 | |
8 | 0.02, 0, 0.02 | |
9 | 0.02, 0.02, 0.02 | |
10 | 0.02, 0.02, 0.02 |
Transformation | ICP | WOA + ICP | NIWOA + ICP | |||
---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | |
1 | 2.1002 × 10–3 | 1.4861 × 10–3 | 0.2007 × 10–3 | 0.1604 × 10–3 | 0.1594 × 10–3 | 0.1260 × 10–3 |
2 | 3.4861 × 10–3 | 1.7831 × 10–3 | 1.2827 × 10–3 | 1.0576 × 10–3 | 1.1262 × 10–3 | 0.9321 × 10–3 |
3 | 3.1411 × 10–3 | 2.3184 × 10–3 | 0.9909 × 10–3 | 0.7848 × 10–3 | 0.4054 × 10–3 | 0.3247 × 10–3 |
4 | 3.9570 × 10–3 | 3.4569 × 10–3 | 3.3988 × 10–3 | 2.7422 × 10–3 | 2.8368 × 10–3 | 2.3830 × 10–3 |
5 | 1.9144 × 10–3 | 1.6427 × 10–3 | 0.3501 × 10–3 | 0.2812 × 10–3 | 0.2022 × 10–3 | 0.1631 × 10–3 |
6 | 2.8302 × 10–3 | 2.4801 × 10–3 | 1.6946 × 10–3 | 1.3569 × 10–3 | 1.6486 × 10–3 | 1.3116 × 10–3 |
7 | 18.126 × 10–3 | 10.026 × 10–3 | 5.2826 × 10–3 | 4.3323 × 10–3 | 4.1156 × 10–3 | 3.4269 × 10–3 |
8 | 20.061 × 10–3 | 14.061 × 10–3 | 2.9983 × 10–3 | 2.5001 × 10–3 | 1.9489 × 10–3 | 1.6364 × 10–3 |
9 | 29.314 × 10–3 | 24.731 × 10–3 | 7.4075 × 10–3 | 5.9711 × 10–3 | 7.5001 × 10–3 | 6.1138 × 10–3 |
10 | 66.117 × 10–3 | 61.217 × 10–3 | 37.331 × 10–3 | 30.152 × 10–3 | 22.662 × 10–3 | 17.913 × 10–3 |
Transformation | ICP | WOA + ICP | NIWOA + ICP | |||
---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | |
1 | 2.8112 × 10–3 | 1.4781 × 10–3 | 0.4685 × 10–3 | 0.3926 × 10–3 | 0.4039 × 10–3 | 0.3458 × 10–3 |
2 | 71.331 × 10–3 | 69.913 × 10–3 | 44.146 × 10–3 | 36.296 × 10–3 | 1.0666 × 10–3 | 0.8857 × 10–3 |
3 | 50.096 × 10–3 | 41.562 × 10–3 | 30.267 × 10–3 | 25.145 × 10–3 | 0.4070 × 10–3 | 0.3437 × 10–3 |
4 | 15.584 × 10–3 | 10.015 × 10–3 | 3.1386 × 10–3 | 2.5825 × 10–3 | 2.2677 × 10–3 | 1.9539 × 10–3 |
5 | 17.146 × 10–3 | 11.291 × 10–3 | 8.8337 × 10–3 | 7.6719 × 10–3 | 5.1751 × 10–3 | 4.4633 × 10–3 |
6 | 15.001 × 10–3 | 10.687 × 10–3 | 12.501 × 10–3 | 9.8141 × 10–3 | 1.6681 × 10–3 | 1.3077 × 10–3 |
7 | 67.839 × 10–3 | 57.630 × 10–3 | 34.551 × 10–3 | 28.232 × 10–3 | 9.1667 × 10–3 | 7.2391 × 10–3 |
8 | 66.110 × 10–3 | 61.561 × 10–3 | 47.292 × 10–3 | 39.386 × 10–3 | 22.095 × 10–3 | 18.644 × 10–3 |
9 | 36.001 × 10–3 | 30.088 × 10–3 | 19.637 × 10–3 | 16.394 × 10–3 | 6.3658 × 10–3 | 5.2960 × 10–3 |
10 | 34.892 × 10–3 | 29.939 × 10–3 | 23.121 × 10–3 | 19.864 × 10–3 | 19.764 × 10–3 | 15.716 × 10–3 |
Transformation | ICP | WOA + ICP | NIWOA + ICP | |||
---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | |
1 | 18.641 × 10–3 | 10.124 × 10–3 | 1.5373 × 10–3 | 1.2586 × 10–3 | 0.2062 × 10–3 | 0.1553 × 10–3 |
2 | 18.712 × 10–3 | 11.349 × 10–3 | 2.1173 × 10–3 | 1.7448 × 10–3 | 1.5942 × 10–3 | 1.3149 × 10–3 |
3 | 17.130 × 10–3 | 13.177 × 10–3 | 3.5651 × 10–3 | 2.8069 × 10–3 | 2.5926 × 10–3 | 2.0991 × 10–3 |
4 | 13.577 × 10–3 | 10.006 × 10–3 | 5.2117 × 10–3 | 4.3217 × 10–3 | 1.2529 × 10–3 | 1.0146 × 10–3 |
5 | 14.519 × 10–3 | 12.508 × 10–3 | 6.9152 × 10–3 | 5.6668 × 10–3 | 2.5551 × 10–3 | 2.0391 × 10–3 |
6 | 11.667 × 10–3 | 9.6474 × 10–3 | 7.6794 × 10–3 | 6.2240 × 10–3 | 2.0824 × 10–3 | 1.6497 × 10–3 |
7 | 10.969 × 10–3 | 9.9773 × 10–3 | 7.1197 × 10–3 | 5.9673 × 10–3 | 4.9126 × 10–3 | 4.1194 × 10–3 |
8 | 17.478 × 10–3 | 14.302 × 10–3 | 5.9541 × 10–3 | 4.8468 × 10–3 | 1.9536 × 10–3 | 1.5721 × 10–3 |
9 | 70.447 × 10–3 | 61.347 × 10–3 | 31.051 × 10–3 | 24.896 × 10–3 | 3.9365 × 10–3 | 3.0721 × 10–3 |
10 | 77.893 × 10–3 | 74.622 × 10–3 | 36.490 × 10–3 | 29.492 × 10–3 | 36.263 × 10–3 | 29.271 × 10–3 |
Transformation | ICP | WOA + ICP | NIWOA + ICP | |||
---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | |
1 | 1.3479 × 10–3 | 1.1371 × 10–3 | 0.4246 × 10–3 | 0.3392 × 10–3 | 0.1132 × 10–3 | 0.0903 × 10–3 |
2 | 1.1748 × 10–3 | 1.0030 × 10–3 | 1.1835 × 10–3 | 0.9645 × 10–3 | 1.0259 × 10–3 | 0.8322 × 10–3 |
3 | 6.0047 × 10–3 | 5.4641 × 10–3 | 3.1674 × 10–3 | 2.5306 × 10–3 | 0.2740 × 10–3 | 0.2330 × 10–3 |
4 | 3.9903 × 10–3 | 3.2616 × 10–3 | 2.3172 × 10–3 | 1.9182 × 10–3 | 2.1463 × 10–3 | 1.7688 × 10–3 |
5 | 5.3781 × 10–3 | 5.1791 × 10–3 | 5.4066 × 10–3 | 4.5087 × 10–3 | 3.9862 × 10–3 | 3.3243 × 10–3 |
6 | 1.1792 × 10–3 | 1.0463 × 10–3 | 0.5406 × 10–3 | 0.4141 × 10–3 | 0.2620 × 10–3 | 0.2222 × 10–3 |
7 | 14.300 × 10–3 | 11.413 × 10–3 | 9.0206 × 10–3 | 7.4120 × 10–3 | 5.0598 × 10–3 | 4.2153 × 10–3 |
8 | 12.588 × 10–3 | 11.647 × 10–3 | 2.5597 × 10–3 | 2.1557 × 10–3 | 0.9920 × 10–3 | 0.7820 × 10–3 |
9 | 17.493 × 10–3 | 13.414 × 10–3 | 4.4930 × 10–3 | 3.7820 × 10–3 | 4.3744 × 10–3 | 3.7186 × 10–3 |
10 | 29.157 × 10–3 | 24.937 × 10–3 | 15.620 × 10–3 | 12.618 × 10–3 | 14.347 × 10–3 | 11.438 × 10–3 |
Transformation | ICP | WOA + ICP | NIWOA + ICP | |||
---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | |
1 | 8.9401 × 10–3 | 8.4811 × 10–3 | 5.7463 × 10–3 | 5.0161 × 10–3 | 1.5710 × 10–3 | 1.3297 × 10–3 |
2 | 10.257 × 10–3 | 10.043 × 10–3 | 9.5630 × 10–3 | 8.0642 × 10–3 | 8.9771 × 10–3 | 7.1357 × 10–3 |
3 | 2.1486 × 10–3 | 1.8326 × 10–3 | 1.4353 × 10–3 | 1.2796 × 10–3 | 0.2486 × 10–3 | 0.2102 × 10–3 |
4 | 60.011 × 10–3 | 57.561 × 10–3 | 13.508 × 10–3 | 11.683 × 10–3 | 10.366 × 10–3 | 8.9703 × 10–3 |
5 | 9.1137 × 10–3 | 8.8991 × 10–3 | 5.9154 × 10–3 | 5.1550 × 10–3 | 4.3545 × 10–3 | 3.8034 × 10–3 |
6 | 35.593 × 10–3 | 27.911 × 10–3 | 17.320 × 10–3 | 13.497 × 10–3 | 9.3239 × 10–3 | 8.0980 × 10–3 |
7 | 29.316 × 10–3 | 26.633 × 10–3 | 15.143 × 10–3 | 12.344 × 10–3 | 7.7929 × 10–3 | 6.5554 × 10–3 |
8 | 94.538 × 10–3 | 89.441 × 10–3 | 25.555 × 10–3 | 18.465 × 10–3 | 27.143 × 10–3 | 20.060 × 10–3 |
9 | 88.807 × 10–3 | 83.218 × 10–3 | 71.708 × 10–3 | 58.281 × 10–3 | 32.818 × 10–3 | 26.988 × 10–3 |
10 | 91.861 × 10–3 | 86.144 × 10–3 | 74.896 × 10–3 | 60.091 × 10–3 | 40.155 × 10–3 | 28.103 × 10–3 |
Point Cloud Model | ICP | WOA + ICP | NIWOA + ICP | ||||
---|---|---|---|---|---|---|---|
bun000 and bun045 | 9.62 | 2.08 | 0.78 | 2.86 | 1.58 | 0.73 | 2.31 |
dragonBk1_0 anddragonBk4_0 | 11.06 | 2.60 | 0.74 | 3.34 | 2.47 | 0.54 | 3.01 |
ArmadilloOnHeadMultipleOffset_15 and 45 | 8.57 | 1.61 | 0.39 | 2.00 | 1.49 | 0.41 | 1.90 |
happyBkgd3_0 and happyBkgd4_0 | 27.39 | 9.04 | 1.14 | 10.18 | 8.36 | 1.22 | 9.58 |
sun3d-hotel_umdmaryland_ hotel3cloud_bin_35 and 36 | 13.26 | 6.55 | 0.79 | 7.34 | 3.91 | 0.57 | 4.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Yue, X.; Zhu, J. Coarse–Fine Registration of Point Cloud Based on New Improved Whale Optimization Algorithm and Iterative Closest Point Algorithm. Symmetry 2023, 15, 2128. https://doi.org/10.3390/sym15122128
Tian Y, Yue X, Zhu J. Coarse–Fine Registration of Point Cloud Based on New Improved Whale Optimization Algorithm and Iterative Closest Point Algorithm. Symmetry. 2023; 15(12):2128. https://doi.org/10.3390/sym15122128
Chicago/Turabian StyleTian, Yunsheng, Xiaofeng Yue, and Juan Zhu. 2023. "Coarse–Fine Registration of Point Cloud Based on New Improved Whale Optimization Algorithm and Iterative Closest Point Algorithm" Symmetry 15, no. 12: 2128. https://doi.org/10.3390/sym15122128
APA StyleTian, Y., Yue, X., & Zhu, J. (2023). Coarse–Fine Registration of Point Cloud Based on New Improved Whale Optimization Algorithm and Iterative Closest Point Algorithm. Symmetry, 15(12), 2128. https://doi.org/10.3390/sym15122128