A New Sine-Based Distributional Method with Symmetrical and Asymmetrical Natures: Control Chart with Industrial Implication
<p>Graphical illustrations of <math display="inline"><semantics> <mrow> <mi>F</mi> <mfenced separators="" open="(" close=")"> <mi>x</mi> <mo>;</mo> <mi mathvariant="bold-italic">λ</mi> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>S</mi> <mfenced separators="" open="(" close=")"> <mi>x</mi> <mo>;</mo> <mi mathvariant="bold-italic">λ</mi> </mfenced> </mrow> </semantics></math> of the NMS-Weibull distribution.</p> "> Figure 2
<p>Visual illustrations of <math display="inline"><semantics> <mrow> <mi>f</mi> <mfenced separators="" open="(" close=")"> <mi>x</mi> <mo>;</mo> <mi mathvariant="bold-italic">λ</mi> </mfenced> </mrow> </semantics></math> of the NMS-Weibull distribution.</p> "> Figure 3
<p>Graphical illustration of the SS of the NMS-Weibull model for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1.6</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Graphical illustration of the SS of the NMS-Weibull model for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1.2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Graphical illustration of the SS of the NMS-Weibull model for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>1.2</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Visual description of the failure times in the secondary reactor pumps data set.</p> "> Figure 7
<p>The profiles of the log-likelihood function of <math display="inline"><semantics> <msub> <mover accent="true"> <mi>α</mi> <mo>^</mo> </mover> <mrow> <mi>M</mi> <mi>L</mi> <mi>E</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mover accent="true"> <mi>τ</mi> <mo>^</mo> </mover> <mrow> <mi>M</mi> <mi>L</mi> <mi>E</mi> </mrow> </msub> </semantics></math> of the NMS-Weibull distribution.</p> "> Figure 8
<p>The visual comparison of the fitted models using the failure times between secondary reactor pumps.</p> "> Figure 9
<p>The proposed control chart for real data.</p> "> Figure 10
<p>The attribute control chart for Weibull distribution using real data.</p> ">
Abstract
:1. Introduction
2. Special Model
3. Estimation and Simulation
3.1. Estimation
3.2. Simulation
4. Data Analysis
- Weibull distribution of Weibull [22].
- Exponential TX Weibull (ETX-Weibull) distribution of Ahmad et al. [23].
- New modified Weibull (NM-Weibull) distribution of El-Morshedy et al. [24].
- The Cramér–von Mises (CVM) criterion, computed as
- The Anderson–Darling (AD) criterion, obtained using the formula
- The Kolmogorov–Smirnov (KS) criterion, obtained as
5. The Attribute Control Charts
5.1. The Proposed Control Chart
- Step 1: Examining a simple random sample of size n from the submitted lot. The number of failures denoted by D is obtained before the experiment time , where is the quality consideration under the condition that the process is in-control and a is a multiplier constant.
- Step 2: Declare the process as out-of-control when or ; otherwise, the process is in-control if
- Find out the ARL value, say and known parametric values and , respectively.
- Determine the chart constants L, a and n such that the value is almost equal to , i.e., .
- Subsequent to receiving the values in Step 2, determine the according to shift constant c based on Equation (23).
- It is observed that the value shows a decreasing tendency as the positive shift value c increases and the negative shift value c decreases.
5.2. Chart Illustration
- Take a simple random sample of 20 people from each subgroup and place them in the life testing assessment for 983 h. Determine the number of failed units, say D, over the course of the experiment.
- If is present, the production process is under control; otherwise, the production process is out of control.
5.3. Application in Industry
5.4. Comparison
6. Limitations of the Study
- Since the NMS-Weibull distribution is a continuous type distribution, it would not be a sensible decision to use it for modeling discrete-type data sets.
- Due to the complicated form of the density function, more computational effort is needed to obtain the distributional properties of the NMS-Weibull distribution.
- Due to the complicated form of the density function, the expressions for the MLEs of the NMS-Weibull distribution are not in explicit forms. Therefore, we need to use computer software to obtain the numerical estimates for the parameters of the NMS-Weibull distribution.
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alotaibi, R.; Nassar, M.; Rezk, H.; Elshahhat, A. Inferences and engineering applications of alpha power Weibull distribution using progressive type-II censoring. Mathematics 2022, 10, 2901. [Google Scholar] [CrossRef]
- Alyami, S.A.; Elbatal, I.; Alotaibi, N.; Almetwally, E.M.; Okasha, H.M.; Elgarhy, M. Topp–Leone Modified Weibull Model: Theory and Applications to Medical and Engineering Data. Appl. Sci. 2022, 12, 10431. [Google Scholar] [CrossRef]
- Klakattawi, H.S. Survival analysis of cancer patients using a new extended Weibull distribution. PLoS ONE 2022, 17, e0264229. [Google Scholar] [CrossRef]
- Ahmad, Z.; Almaspoor, Z.; Khan, F.; El-Morshedy, M. On predictive modeling using a new flexible Weibull distribution and machine learning approach: Analyzing the COVID-19 data. Mathematics 2022, 10, 1792. [Google Scholar] [CrossRef]
- Silahli, B.; Dingec, K.D.; Cifter, A.; Aydin, N. Portfolio value-at-risk with two-sided Weibull distribution: Evidence from cryptocurrency markets. Financ. Res. Lett. 2021, 38, 101425. [Google Scholar] [CrossRef]
- Ahmad, Z.; Almaspoor, Z.; Khan, F.; Alhazmi, S.E.; El-Morshedy, M.; Ababneh, O.Y.; Al-Omari, A.I. On fitting and forecasting the log-returns of cryptocurrency exchange rates using a new logistic model and machine learning algorithms. AIMS Math. 2022, 7, 18031–18049. [Google Scholar] [CrossRef]
- Barthwal, A.; Acharya, D. Performance analysis of sensing-based extreme value models for urban air pollution peaks. Model. Earth Syst. Environ. 2022, 8, 4149–4163. [Google Scholar] [CrossRef]
- Natarajan, N.; Vasudevan, M.; Rehman, S. Evaluation of suitability of wind speed probability distribution models: A case study from Tamil Nadu, India. Environ. Sci. Pollut. Res. 2022, 29, 85855–85868. [Google Scholar] [CrossRef]
- El-Morshedy, M.; Eliwa, M.S.; Tyagi, A. A discrete analogue of odd Weibull-G family of distributions: Properties, classical and Bayesian estimation with applications to count data. J. Appl. Stat. 2022, 49, 2928–2952. [Google Scholar] [CrossRef]
- Eghwerido, J.T.; Agu, F.I.; Ibidoja, O.J. The shifted exponential-G family of distributions: Properties and applications. J. Stat. Manag. Syst. 2022, 25, 43–75. [Google Scholar] [CrossRef]
- Anzagra, L.; Sarpong, S.; Nasiru, S. Odd Chen-G family of distributions. Ann. Data Sci. 2022, 9, 369–391. [Google Scholar] [CrossRef]
- Hassan, A.S.; Al-Omari, A.I.; Hassan, R.R.; Alomani, G.A. The odd inverted Topp Leone–H family of distributions: Estimation and applications. J. Radiat. Res. Appl. Sci. 2022, 15, 365–379. [Google Scholar] [CrossRef]
- Chesneau, C.; Bakouch, H.S.; Hussain, T. A new class of probability distributions via cosine and sine functions with applications. Commun. Stat. Simul. Comput. 2019, 48, 2287–2300. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, U.; Singh, S.K. A new distribution using sine function-its application to bladder cancer patients data. J. Stat. Appl. Probab. 2015, 4, 417. [Google Scholar]
- Chesneau, C.; Jamal, F. The sine Kumaraswamy-G family of distributions. J. Math. Ext. 2020, 15, 1–33. [Google Scholar]
- Al-Babtain, A.A.; Elbatal, I.; Chesneau, C.; Elgarhy, M. Sine Topp-Leone-G family of distributions: Theory and applications. Open Phys. 2020, 18, 574–593. [Google Scholar] [CrossRef]
- Jamal, F.; Chesneau, C.; Bouali, D.L.; Ul Hassan, M. Beyond the Sin-G family: The transformed Sin-G family. PLoS ONE 2021, 16, e0250790. [Google Scholar] [CrossRef]
- Suprawhardana, M.S.; Prayoto, S. Total time on test plot analysis for mechanical components of the RSG-GAS reactor. Atom Indones. 1999, 25, 81–90. [Google Scholar]
- Bebbington, M.; Lai, C.D.; Zitikis, R. A flexible Weibull extension. Reliab. Eng. Syst. Saf. 2007, 92, 719–726. [Google Scholar] [CrossRef]
- Coşkun, K.U.Ş.; Korkmaz, M.Ç.; Kinaci, İ.; Karakaya, K.; Akdogan, Y. Modified-Lindley distribution and its applications to the real data. Commun. Fac. Sci. Univ. Ank. Ser. Math. Stat. 2022, 71, 252–272. [Google Scholar]
- Demirci Bicer, H.; Bicer, C.; Bakouch, H.S.H. A geometric process with Hjorth marginal: Estimation, discrimination, and reliability data modeling. Qual. Reliab. Eng. Int. 2022, 38, 2795–2819. [Google Scholar] [CrossRef]
- Weibull, W. A Statistical Distribution of wide Applicability. J. Appl. Mech. 1951, 18, 239–296. [Google Scholar] [CrossRef]
- Ahmad, Z.; Mahmoudi, E.; Alizadeh, M.; Roozegar, R.; Afify, A.Z. The exponential TX family of distributions: Properties and an application to insurance data. J. Math. 2021, 2021, 3058170. [Google Scholar] [CrossRef]
- El-Morshedy, M.; Ahmad, Z.; Tag-Eldin, E.; Almaspoor, Z.; Eliwa, M.S.; Iqbal, Z. A new statistical approach for modeling the bladder cancer and leukemia patients data sets: Case studies in the medical sector. Math. Biosci. Eng. MBE 2022, 19, 10474–10492. [Google Scholar] [CrossRef]
- Dutta, G.; Kumar, R.; Sindhwani, R.; Singh, R.K. Digitalization priorities of quality control processes for SMEs: A conceptual study in perspective of Industry 4.0 adoption. J. Intell. Manuf. 2021, 32, 1679–1698. [Google Scholar] [CrossRef]
- Meramveliotakis, G.; Manioudis, M. Sustainable development, COVID-19 and small business in Greece: Small is not beautiful. Adm. Sci. 2021, 11, 90. [Google Scholar] [CrossRef]
- Moeuf, A.; Pellerin, R.; Lamouri, S.; Tamayo-Giraldo, S.; Barbaray, R. The industrial management of SMEs in the era of Industry 4.0. Int. J. Prod. Res. 2018, 56, 1118–1136. [Google Scholar] [CrossRef]
- Kahar, A.; Tampang, T.; Masdar, R.; Masrudin, M. Value chain analysis of total quality control, quality performance and competitive advantage of agricultural SMEs. Uncertain Supply Chain Manag. 2022, 10, 551–558. [Google Scholar] [CrossRef]
- Yang, C.C. The effectiveness analysis of the practices in five quality management stages for SMEs. Total. Qual. Manag. Bus. Excell. 2020, 31, 955–977. [Google Scholar] [CrossRef]
- Sundaram, S.; Zeid, A. Artificial intelligence-based smart quality inspection for manufacturing. Micromachines 2023, 14, 570. [Google Scholar] [CrossRef]
- Adeoti, O.A.; Ogundipe, P. A control chart for the generalized exponential distribution under time truncated life test. Life Cycle Reliab. Saf. Eng. 2021, 10, 53–59. [Google Scholar] [CrossRef]
- Quinino, R.D.C.; Ho, L.L.; Cruz, F.R.B.D.; Bessegato, L.F. A control chart to monitor the process mean based on inspecting attributes using control limits of the traditional X-bar chart. J. Stat. Comput. Simul. 2020, 90, 1639–1660. [Google Scholar] [CrossRef]
- Rao, G.S. A control chart for time truncated life tests using exponentiated half logistic distribution. Appl. Math. Inf. Sci. 2018, 12, 125–131. [Google Scholar] [CrossRef]
- Rao, G.S.; Al-Omari, A.I. Attribute Control Charts Based on TLT for Length-Biased Weighted Lomax Distribution. J. Math. 2022, 2022, 3091850. [Google Scholar]
- Alomair, M.A.; Ahmad, Z.; Rao, G.S.; Al-Mofleh, H.; Khosa, S.K.; Al Naim, A.S. A new trigonometric modification of the Weibull distribution: Control chart and applications in quality control. PLoS ONE 2023, 18, e0286593. [Google Scholar] [CrossRef]
- Aslam, M.; Jun, C.H. Attribute control charts for the Weibull distribution under truncated life tests. Qual. Eng. 2015, 27, 283–288. [Google Scholar] [CrossRef]
- Adeoti, O.A.; Rao, G.S. Attribute Control Chart for Rayleigh Distribution Using Repetitive Sampling under Truncated Life Test. J. Probab. Stat. 2022, 2022, 8763091. [Google Scholar] [CrossRef]
n | Parameters | MLEs | MSEs | Biases |
---|---|---|---|---|
25 | 1.7058470 | 0.093483043 | 0.105846584 | |
0.8155479 | 0.093283376 | 0.115547865 | ||
50 | 1.6423630 | 0.034815198 | 0.042363078 | |
0.7323058 | 0.026648979 | 0.032305759 | ||
75 | 1.6355490 | 0.021650251 | 0.035549066 | |
0.7300049 | 0.015752197 | 0.030004944 | ||
100 | 1.6193810 | 0.015016547 | 0.019380712 | |
0.7182018 | 0.010479930 | 0.018201807 | ||
150 | 1.6114620 | 0.010681263 | 0.011461775 | |
0.7062099 | 0.006044519 | 0.006209865 | ||
200 | 1.6179430 | 0.008579487 | 0.017942898 | |
0.7142004 | 0.006189921 | 0.014200418 | ||
250 | 1.6093060 | 0.005664633 | 0.009306357 | |
0.7166943 | 0.004182348 | 0.016694310 | ||
300 | 1.6042410 | 0.005519344 | 0.004240543 | |
0.7039717 | 0.003150546 | 0.003971737 | ||
350 | 1.5998330 | 0.004396528 | −0.000167242 | |
0.7027976 | 0.002760748 | 0.002797628 | ||
400 | 1.5987060 | 0.003819449 | −0.001293900 | |
0.7055447 | 0.002180982 | 0.005544683 | ||
450 | 1.6053810 | 0.003354506 | 0.005381075 | |
0.7037944 | 0.001758227 | 0.003794365 | ||
500 | 1.6059350 | 0.003114073 | 0.005934558 | |
0.7082324 | 0.001967812 | 0.008232406 |
n | Parameters | MLEs | MSEs | Biases |
---|---|---|---|---|
25 | 1.2549060 | 0.044395238 | 0.054906051 | |
0.5550671 | 0.027588079 | 0.055067128 | ||
50 | 1.2358190 | 0.021338634 | 0.035818576 | |
0.5311935 | 0.011947412 | 0.031193494 | ||
75 | 1.2124500 | 0.011271706 | 0.012449877 | |
0.5088994 | 0.005170900 | 0.008899357 | ||
100 | 1.2281550 | 0.009815668 | 0.028154642 | |
0.5175243 | 0.005363298 | 0.017524305 | ||
150 | 1.2064990 | 0.005320626 | 0.006499179 | |
0.5040655 | 0.002577040 | 0.004065460 | ||
200 | 1.2035030 | 0.004052304 | 0.003503492 | |
0.5068780 | 0.001901467 | 0.006877954 | ||
250 | 1.2059680 | 0.003226839 | 0.005967537 | |
0.5065202 | 0.001631163 | 0.006520181 | ||
300 | 1.2042540 | 0.002601533 | 0.004254301 | |
0.5037654 | 0.001372364 | 0.003765379 | ||
350 | 1.2060550 | 0.002405026 | 0.006055456 | |
0.5010220 | 0.001003504 | 0.001021994 | ||
400 | 1.2068830 | 0.001971411 | 0.006882850 | |
0.5023243 | 0.000843874 | 0.002324347 | ||
450 | 1.2059420 | 0.002005009 | 0.005941682 | |
0.5024952 | 0.000792774 | 0.002495189 | ||
500 | 1.2032020 | 0.001486821 | 0.003202500 | |
0.5009489 | 0.000760580 | 0.000948948 |
n | Parameters | MLEs | MSEs | Biases |
---|---|---|---|---|
25 | 0.9731610 | 0.030667641 | 0.073161002 | |
1.5246250 | 0.651926648 | 0.324624826 | ||
50 | 0.9300565 | 0.010075393 | 0.030056496 | |
1.3033900 | 0.119277460 | 0.103390382 | ||
75 | 0.9259897 | 0.006206455 | 0.025989684 | |
1.2826580 | 0.067869132 | 0.082657543 | ||
100 | 0.9190743 | 0.004337160 | 0.019074256 | |
1.2666830 | 0.052836251 | 0.066682575 | ||
150 | 0.9118796 | 0.002542578 | 0.011879576 | |
1.2330440 | 0.021079314 | 0.033043678 | ||
200 | 0.9074134 | 0.001198230 | 0.007413419 | |
1.2214930 | 0.013374842 | 0.021492592 | ||
250 | 0.9072119 | 0.001005603 | 0.007211943 | |
1.2230720 | 0.008603171 | 0.023071959 | ||
300 | 0.9063632 | 0.000802679 | 0.006363228 | |
1.2152340 | 0.006835559 | 0.015233889 | ||
350 | 0.9045964 | 0.000531511 | 0.004596404 | |
1.2120730 | 0.004612884 | 0.012072942 | ||
400 | 0.9040632 | 0.000349953 | 0.004063192 | |
1.2115680 | 0.003378131 | 0.011567549 | ||
450 | 0.9039290 | 0.000319477 | 0.003928996 | |
1.2115500 | 0.002911736 | 0.011550037 | ||
500 | 0.9039453 | 0.000274294 | 0.003945275 | |
1.2078420 | 0.002132846 | 0.007841758 |
2.160, 0.746, 0.402, 0.954, 0.491, 6.560, 4.992, 0.347, 0.150, 0.358, 0.101, 1.359, | |||||
---|---|---|---|---|---|
3.465, 1.060, 0.614, 1.921, 4.082, 0.199, 0.605, 0.273, 0.070, 0.062, 5.320 | |||||
n | Min. | Max. | Median | ||
23 | 0.062 | 6.560 | 1.578 | 0.614 | 3.7275 |
Skewness | Kurtosis | Range | |||
0.310 | 1.9306 | 2.041 | 1.3643 | 3.54453 | 6.498 |
Models | ||||
---|---|---|---|---|
NMS-Weibull | 0.8623 | 0.1338 | - | - |
Weibull | 0.8091 | 0.7642 | - | - |
NM-Weibull | 0.8000 | 0.7835 | 26.5708 | - |
ETX-Weibull | 0.8009 | 26.7728 | - | 0.79023 |
Models | CVM | AD | KS | p-Value |
---|---|---|---|---|
NMS-Weibull | 0.0578 | 0.3908 | 0.1101 | 0.9143 |
Weibull | 0.0655 | 0.4315 | 0.1192 | 0.8615 |
NM-Weibull | 0.0662 | 0.4353 | 0.1192 | 0.8614 |
ETX-Weibull | 0.0664 | 0.4365 | 0.1168 | 0.8766 |
200 | 250 | 300 | 370 | 500 | |
---|---|---|---|---|---|
2.884 | 2.955 | 2.938 | 3.03 | 3.158 | |
0.879 | 0.808 | 0.958 | 0.983 | 0.846 | |
0.10 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.20 | 1.01 | 1.01 | 1.01 | 1.02 | 1.01 |
0.30 | 1.19 | 1.22 | 1.17 | 1.34 | 1.30 |
0.40 | 1.96 | 2.08 | 1.87 | 2.60 | 2.44 |
0.50 | 4.16 | 4.49 | 3.88 | 6.46 | 5.83 |
0.60 | 9.93 | 10.75 | 9.17 | 17.86 | 15.33 |
0.70 | 24.74 | 26.58 | 22.88 | 50.95 | 41.33 |
0.80 | 60.95 | 64.75 | 57.63 | 141.44 | 109.48 |
0.85 | 92.79 | 98.76 | 90.77 | 223.52 | 174.27 |
0.90 | 134.06 | 145.40 | 140.87 | 319.88 | 268.23 |
0.95 | 175.98 | 200.81 | 212.04 | 343.54 | 387.12 |
1.00 | 200.70 | 250.51 | 300.44 | 370.44 | 500.27 |
1.05 | 196.47 | 241.17 | 282.97 | 302.71 | 485.51 |
1.10 | 170.84 | 233.97 | 242.29 | 227.89 | 449.46 |
1.15 | 139.02 | 211.35 | 198.58 | 167.79 | 412.00 |
1.20 | 110.25 | 192.39 | 183.70 | 124.31 | 364.17 |
1.25 | 87.18 | 156.57 | 169.81 | 93.68 | 287.37 |
1.30 | 69.50 | 126.98 | 151.03 | 72.01 | 226.58 |
1.40 | 45.91 | 85.26 | 120.05 | 45.11 | 144.99 |
1.50 | 32.01 | 59.74 | 84.04 | 30.26 | 97.61 |
1.60 | 23.40 | 43.68 | 57.28 | 21.48 | 68.98 |
1.70 | 17.82 | 33.15 | 40.93 | 15.97 | 50.81 |
1.80 | 14.03 | 25.97 | 30.45 | 12.34 | 38.78 |
1.90 | 11.36 | 20.91 | 23.45 | 9.84 | 30.49 |
2.00 | 9.43 | 17.22 | 18.58 | 8.07 | 24.58 |
3.00 | 3.15 | 5.25 | 4.66 | 2.60 | 6.56 |
4.00 | 1.97 | 3.03 | 2.55 | 1.67 | 3.54 |
200 | 250 | 300 | 370 | 500 | |
---|---|---|---|---|---|
2.888 | 2.953 | 4.125 | 3.033 | 3.48 | |
0.843 | 0.752 | 0.546 | 0.978 | 0.623 | |
0.10 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.20 | 1.01 | 1.01 | 1.15 | 1.02 | 1.03 |
0.30 | 1.19 | 1.22 | 2.39 | 1.34 | 1.50 |
0.40 | 1.95 | 2.09 | 7.29 | 2.60 | 3.21 |
0.50 | 4.13 | 4.51 | 24.52 | 6.43 | 8.24 |
0.60 | 9.84 | 10.82 | 80.82 | 17.75 | 22.32 |
0.70 | 24.47 | 26.77 | 163.07 | 50.61 | 59.85 |
0.80 | 60.20 | 65.26 | 195.59 | 140.42 | 152.22 |
0.85 | 91.69 | 99.54 | 210.22 | 222.05 | 232.16 |
0.90 | 132.66 | 146.48 | 242.30 | 318.38 | 333.59 |
0.95 | 174.75 | 202.02 | 279.98 | 343.04 | 435.84 |
1.00 | 200.31 | 251.41 | 300.69 | 371.34 | 501.33 |
1.05 | 197.10 | 234.31 | 236.65 | 304.21 | 475.10 |
1.10 | 172.03 | 223.36 | 187.87 | 229.29 | 458.56 |
1.15 | 140.28 | 213.35 | 151.21 | 168.89 | 390.96 |
1.20 | 111.35 | 191.34 | 123.54 | 125.12 | 323.76 |
1.25 | 88.08 | 155.64 | 102.41 | 94.27 | 265.88 |
1.30 | 70.21 | 126.20 | 86.04 | 72.45 | 218.90 |
1.40 | 46.35 | 84.75 | 62.95 | 45.37 | 152.08 |
1.50 | 32.29 | 59.40 | 47.97 | 30.42 | 109.92 |
1.60 | 23.60 | 43.44 | 37.79 | 21.58 | 82.47 |
1.70 | 17.95 | 32.98 | 30.61 | 16.04 | 63.92 |
1.80 | 14.13 | 25.85 | 25.37 | 12.38 | 50.92 |
1.90 | 11.44 | 20.81 | 21.44 | 9.88 | 41.53 |
2.00 | 9.49 | 17.15 | 18.43 | 8.09 | 34.56 |
3.00 | 3.16 | 5.24 | 7.03 | 2.61 | 10.73 |
4.00 | 1.98 | 3.02 | 4.33 | 1.67 | 5.95 |
200 | 250 | 300 | 370 | 500 | |
---|---|---|---|---|---|
2.907 | 2.992 | 2.971 | 2.981 | 3.123 | |
0.906 | 0.809 | 0.673 | 0.906 | 0.698 | |
0.10 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.20 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.30 | 1.02 | 1.04 | 1.09 | 1.06 | 1.10 |
0.40 | 1.29 | 1.37 | 1.64 | 1.56 | 1.74 |
0.50 | 2.26 | 2.55 | 3.39 | 3.39 | 3.83 |
0.60 | 5.12 | 5.95 | 8.29 | 9.40 | 10.09 |
0.70 | 13.40 | 15.63 | 21.78 | 29.44 | 28.48 |
0.80 | 37.41 | 43.04 | 57.87 | 95.61 | 81.29 |
0.85 | 62.56 | 71.33 | 93.19 | 168.17 | 135.87 |
0.90 | 102.06 | 116.09 | 146.59 | 273.11 | 222.43 |
0.95 | 154.83 | 180.09 | 219.82 | 367.05 | 348.48 |
1.00 | 201.33 | 251.90 | 301.85 | 370.65 | 500.69 |
1.05 | 189.38 | 226.81 | 289.43 | 294.45 | 423.67 |
1.10 | 178.12 | 207.36 | 272.73 | 209.52 | 381.51 |
1.15 | 135.64 | 200.07 | 246.91 | 145.83 | 365.05 |
1.20 | 99.68 | 186.32 | 231.56 | 102.93 | 339.66 |
1.25 | 73.41 | 141.45 | 227.22 | 74.48 | 308.30 |
1.30 | 54.98 | 107.73 | 181.75 | 55.35 | 295.86 |
1.40 | 32.84 | 65.27 | 118.42 | 32.89 | 185.22 |
1.50 | 21.23 | 42.28 | 80.74 | 21.24 | 122.12 |
1.60 | 14.68 | 29.09 | 57.65 | 14.68 | 84.73 |
1.70 | 10.71 | 21.04 | 42.88 | 10.71 | 61.44 |
1.80 | 8.18 | 15.87 | 33.00 | 8.18 | 46.25 |
1.90 | 6.48 | 12.40 | 26.15 | 6.48 | 35.92 |
2.00 | 5.29 | 9.98 | 21.24 | 5.29 | 28.66 |
3.00 | 1.83 | 2.89 | 5.95 | 1.83 | 7.17 |
4.00 | 1.29 | 1.77 | 3.30 | 1.29 | 3.76 |
200 | 250 | 300 | 370 | 500 | |
---|---|---|---|---|---|
2.905 | 2.991 | 2.939 | 3.1 | 3.122 | |
0.877 | 0.754 | 0.932 | 0.905 | 0.619 | |
0.10 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.20 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.30 | 1.02 | 1.04 | 1.02 | 1.04 | 1.10 |
0.40 | 1.28 | 1.37 | 1.30 | 1.41 | 1.74 |
0.50 | 2.26 | 2.54 | 2.32 | 2.75 | 3.84 |
0.60 | 5.11 | 5.94 | 5.37 | 6.95 | 10.11 |
0.70 | 13.35 | 15.59 | 14.47 | 20.13 | 28.56 |
0.80 | 37.23 | 42.91 | 41.83 | 61.71 | 81.57 |
0.85 | 62.26 | 71.10 | 71.70 | 107.87 | 136.35 |
0.90 | 101.59 | 115.73 | 121.89 | 183.26 | 223.20 |
0.95 | 154.25 | 179.59 | 200.31 | 286.00 | 349.58 |
1.00 | 200.97 | 250.42 | 300.42 | 370.81 | 500.90 |
1.05 | 189.56 | 291.67 | 285.00 | 359.57 | 474.37 |
1.10 | 178.63 | 287.63 | 267.04 | 296.68 | 451.27 |
1.15 | 136.17 | 240.53 | 246.01 | 214.97 | 434.17 |
1.20 | 100.10 | 186.77 | 217.59 | 152.15 | 418.62 |
1.25 | 73.72 | 141.81 | 156.31 | 108.83 | 377.37 |
1.30 | 55.20 | 108.00 | 113.24 | 79.57 | 295.10 |
1.40 | 32.96 | 65.43 | 63.17 | 45.70 | 184.76 |
1.50 | 21.31 | 42.38 | 38.38 | 28.60 | 121.83 |
1.60 | 14.72 | 29.15 | 25.11 | 19.22 | 84.54 |
1.70 | 10.74 | 21.08 | 17.47 | 13.69 | 61.32 |
1.80 | 8.20 | 15.90 | 12.78 | 10.23 | 46.16 |
1.90 | 6.49 | 12.42 | 9.74 | 7.95 | 35.86 |
2.00 | 5.31 | 9.99 | 7.70 | 6.38 | 28.61 |
3.00 | 1.83 | 2.90 | 2.17 | 1.99 | 7.16 |
4.00 | 1.29 | 1.77 | 1.40 | 1.34 | 3.75 |
200 | 250 | 300 | 370 | 500 | |
---|---|---|---|---|---|
2.891 | 2.953 | 2.939 | 3.059 | 3.157 | |
0.744 | 0.609 | 0.905 | 0.864 | 0.678 | |
0.10 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.20 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 |
0.30 | 1.18 | 1.22 | 1.17 | 1.21 | 1.30 |
0.40 | 1.95 | 2.09 | 1.87 | 2.08 | 2.45 |
0.50 | 4.11 | 4.51 | 3.88 | 4.59 | 5.84 |
0.60 | 9.77 | 10.83 | 9.18 | 11.45 | 15.39 |
0.70 | 24.28 | 26.79 | 22.92 | 29.86 | 41.51 |
0.80 | 59.71 | 65.32 | 57.74 | 77.76 | 110.00 |
0.85 | 90.95 | 99.62 | 90.95 | 123.64 | 175.11 |
0.90 | 131.73 | 146.59 | 141.15 | 191.40 | 269.46 |
0.95 | 173.91 | 202.15 | 212.45 | 280.32 | 388.59 |
1.00 | 200.02 | 251.51 | 300.91 | 370.36 | 500.42 |
1.05 | 197.51 | 234.32 | 283.33 | 339.73 | 455.68 |
1.10 | 172.83 | 213.29 | 221.32 | 313.00 | 428.63 |
1.15 | 141.14 | 203.25 | 198.29 | 301.50 | 410.73 |
1.20 | 112.10 | 191.23 | 167.27 | 270.75 | 362.91 |
1.25 | 88.68 | 155.54 | 159.39 | 209.65 | 286.30 |
1.30 | 70.69 | 126.12 | 140.68 | 162.26 | 225.72 |
1.40 | 46.65 | 84.70 | 129.83 | 100.52 | 144.45 |
1.50 | 32.49 | 59.36 | 83.91 | 65.97 | 97.28 |
1.60 | 23.73 | 43.42 | 57.19 | 45.71 | 68.75 |
1.70 | 18.05 | 32.97 | 40.87 | 33.17 | 50.66 |
1.80 | 14.20 | 25.84 | 30.41 | 25.03 | 38.67 |
1.90 | 11.49 | 20.80 | 23.42 | 19.51 | 30.40 |
2.00 | 9.53 | 17.14 | 18.56 | 15.64 | 24.52 |
3.00 | 3.17 | 5.24 | 4.65 | 4.21 | 6.55 |
4.00 | 1.98 | 3.02 | 2.54 | 2.38 | 3.53 |
200 | 250 | 300 | 370 | 500 | |
---|---|---|---|---|---|
2.901 | 2.99 | 2.941 | 3.099 | 3.144 | |
0.797 | 0.612 | 0.884 | 0.841 | 0.634 | |
0.10 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.20 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.30 | 1.02 | 1.04 | 1.03 | 1.04 | 1.06 |
0.40 | 1.28 | 1.37 | 1.30 | 1.40 | 1.57 |
0.50 | 2.25 | 2.54 | 2.32 | 2.75 | 3.35 |
0.60 | 5.07 | 5.93 | 5.40 | 6.93 | 8.97 |
0.70 | 13.23 | 15.58 | 14.54 | 20.07 | 26.74 |
0.80 | 36.86 | 42.87 | 42.07 | 61.48 | 82.35 |
0.85 | 61.61 | 71.02 | 72.15 | 107.46 | 143.30 |
0.90 | 100.56 | 115.60 | 122.68 | 182.58 | 241.92 |
0.95 | 152.97 | 179.40 | 201.52 | 285.17 | 377.69 |
1.00 | 200.18 | 250.24 | 300.77 | 370.41 | 500.49 |
1.05 | 189.93 | 226.61 | 275.54 | 359.99 | 477.14 |
1.10 | 179.73 | 217.73 | 266.28 | 297.46 | 449.62 |
1.15 | 137.31 | 204.70 | 244.72 | 215.67 | 342.01 |
1.20 | 101.01 | 186.93 | 216.42 | 152.66 | 250.65 |
1.25 | 74.39 | 141.94 | 155.43 | 109.20 | 183.85 |
1.30 | 55.69 | 108.10 | 112.60 | 79.83 | 136.97 |
1.40 | 33.23 | 65.49 | 62.84 | 45.83 | 80.68 |
1.50 | 21.46 | 42.41 | 38.20 | 28.68 | 51.25 |
1.60 | 14.82 | 29.17 | 25.01 | 19.27 | 34.69 |
1.70 | 10.81 | 21.10 | 17.40 | 13.72 | 24.75 |
1.80 | 8.24 | 15.91 | 12.73 | 10.25 | 18.44 |
1.90 | 6.53 | 12.43 | 9.71 | 7.96 | 14.25 |
2.00 | 5.33 | 10.00 | 7.67 | 6.39 | 11.36 |
3.00 | 1.83 | 2.90 | 2.16 | 1.99 | 3.10 |
4.00 | 1.29 | 1.77 | 1.40 | 1.35 | 1.85 |
L | 3.059 | 3.033 |
---|---|---|
0.864 | 0.588 | |
NMS-Weibull | Weibull | |
1.0 | 370.36 | 371.41 |
1.1 | 313.00 | 355.04 |
1.2 | 270.75 | 280.20 |
1.3 | 162.26 | 180.81 |
1.4 | 100.52 | 107.48 |
1.5 | 65.97 | 67.16 |
1.6 | 45.71 | 47.06 |
1.7 | 33.17 | 34.87 |
1.8 | 25.03 | 26.74 |
1.9 | 19.51 | 21.12 |
2 | 15.64 | 17.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshanbari, H.M.; Rao, G.S.; Seong, J.-T.; Khosa, S.K. A New Sine-Based Distributional Method with Symmetrical and Asymmetrical Natures: Control Chart with Industrial Implication. Symmetry 2023, 15, 1892. https://doi.org/10.3390/sym15101892
Alshanbari HM, Rao GS, Seong J-T, Khosa SK. A New Sine-Based Distributional Method with Symmetrical and Asymmetrical Natures: Control Chart with Industrial Implication. Symmetry. 2023; 15(10):1892. https://doi.org/10.3390/sym15101892
Chicago/Turabian StyleAlshanbari, Huda M., Gadde Srinivasa Rao, Jin-Taek Seong, and Saima K. Khosa. 2023. "A New Sine-Based Distributional Method with Symmetrical and Asymmetrical Natures: Control Chart with Industrial Implication" Symmetry 15, no. 10: 1892. https://doi.org/10.3390/sym15101892
APA StyleAlshanbari, H. M., Rao, G. S., Seong, J. -T., & Khosa, S. K. (2023). A New Sine-Based Distributional Method with Symmetrical and Asymmetrical Natures: Control Chart with Industrial Implication. Symmetry, 15(10), 1892. https://doi.org/10.3390/sym15101892