Constrained DNN-Based Robust Model Predictive Control Scheme with Adjustable Error Tube
<p>A two-dimensional depiction of the control maneuver. Different regions in the graph represent the following: <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mrow> <mn>1</mn> <mo>−</mo> </mrow> </msub> </mrow> </semantics></math> corresponds to the region where <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>≤</mo> <mo>−</mo> <msub> <mi>e</mi> <mn>0</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>e</mi> <mi>c</mi> </msub> <mo>≥</mo> <msub> <mi>e</mi> <mn>0</mn> </msub> <msup> <mrow/> <mo>′</mo> </msup> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mrow> <mn>1</mn> <mo>+</mo> </mrow> </msub> </mrow> </semantics></math> depicts the area with <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>≥</mo> <msub> <mi>e</mi> <mn>0</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>e</mi> <mi>c</mi> </msub> <mo>≤</mo> <mo>−</mo> <msub> <mi>e</mi> <mn>0</mn> </msub> <msup> <mrow/> <mo>′</mo> </msup> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msub> </mrow> </semantics></math> characterizes the area where <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mi>e</mi> <mo>|</mo> </mrow> <mo>≤</mo> <msub> <mi>e</mi> <mn>0</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>e</mi> <mi>c</mi> </msub> <mo>≥</mo> <msubsup> <mi>e</mi> <mn>0</mn> <mo>′</mo> </msubsup> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mrow> <mn>2</mn> <mo>−</mo> </mrow> </msub> </mrow> </semantics></math> highlights the territory where <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mi>e</mi> <mo>|</mo> </mrow> <mo>≤</mo> <msub> <mi>e</mi> <mn>0</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>e</mi> <mi>c</mi> </msub> <mo>≤</mo> <mo>−</mo> <msub> <mi>e</mi> <mn>0</mn> </msub> <msup> <mrow/> <mo>′</mo> </msup> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mrow> <mn>3</mn> <mo>+</mo> </mrow> </msub> </mrow> </semantics></math> showcases the domain where <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>≥</mo> <msub> <mi>e</mi> <mn>0</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>e</mi> <mi>c</mi> </msub> <mo>≤</mo> <mrow> <mo>|</mo> <mrow> <msubsup> <mi>e</mi> <mn>0</mn> <mo>′</mo> </msubsup> </mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mrow> <mn>3</mn> <mo>−</mo> </mrow> </msub> </mrow> </semantics></math> marks the domain where <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>≤</mo> <mo>−</mo> <msub> <mi>e</mi> <mn>0</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>e</mi> <mi>c</mi> </msub> <mo>≤</mo> <mrow> <mo>|</mo> <mrow> <msubsup> <mi>e</mi> <mn>0</mn> <mo>′</mo> </msubsup> </mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mrow> <mn>4</mn> <mo>+</mo> </mrow> </msub> </mrow> </semantics></math> exemplifies the region where <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mi>e</mi> <mi>c</mi> </msub> </mrow> <mo>|</mo> </mrow> <mo>≤</mo> <msubsup> <mi>e</mi> <mn>0</mn> <mo>′</mo> </msubsup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>≥</mo> <msub> <mi>e</mi> <mn>0</mn> </msub> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mrow> <mn>4</mn> <mo>−</mo> </mrow> </msub> </mrow> </semantics></math> describes the space where <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mi>e</mi> <mi>c</mi> </msub> </mrow> <mo>|</mo> </mrow> <mo>≤</mo> <msubsup> <mi>e</mi> <mn>0</mn> <mo>′</mo> </msubsup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>≤</mo> <mo>−</mo> <msub> <mi>e</mi> <mn>0</mn> </msub> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mn>5</mn> </msub> </mrow> </semantics></math> specifies the domain where <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mi>e</mi> <mo>|</mo> </mrow> <mo><</mo> <msub> <mi>e</mi> <mn>0</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mi>e</mi> <mi>c</mi> </msub> </mrow> <mo>|</mo> </mrow> <mo><</mo> <msub> <mi>e</mi> <mn>0</mn> </msub> <msup> <mrow/> <mo>′</mo> </msup> </mrow> </semantics></math>.</p> "> Figure 2
<p>Diagram illustrating the architectural structure of the deep neural network.</p> "> Figure 3
<p>Diagram of the constrained DNN structure expanded by Algorithm 1.</p> "> Figure 4
<p>The flowchart depicting the feedback processing mechanism of the control synthesis.</p> "> Figure 5
<p>The structure of the constrained DNN-based robust model predictive control scheme with an adjustable error tube.</p> "> Figure 6
<p>Nominal state trajectories under various DNN architectures.</p> "> Figure 7
<p>The state trajectories of the proposed algorithm (<span class="html-italic">N</span> = 12). Colors in the figure represent specific categories as follows: the green polytopes depicte the error tube for every sampling times; the dark gray area represents the 0-step homothetic tube controllability set X<sub>0</sub>; the gray area declares the undesirable state area.</p> "> Figure 8
<p>State astringency comparison between Algorithm 1 and the HTMPC (<span class="html-italic">N</span> = 25). (<b>a</b>) Curves of <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> </semantics></math> obtained by implementing two control algorithms, respectively; (<b>b</b>) curves of <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </semantics></math> obtained by implementing two control algorithms, respectively.</p> "> Figure 9
<p>Control input astringency comparison between Algorithm 1 and the HTMPC (<span class="html-italic">N</span> = 25).</p> "> Figure 10
<p>Comparison of Algorithm 1 and the HTMPC for computational efficiency (<span class="html-italic">N</span> = 50). (<b>a</b>) The statistical of computational time for Algorithm 1. (<b>b</b>) The statistical of computational time for HTMPC.</p> "> Figure 11
<p>Euclidean norm of state error under various DNN architectures.</p> "> Figure 12
<p>State astringency comparison between Algorithm 1 and the HTMPC (<span class="html-italic">N</span> = 30). (<b>a</b>) Curves of state obtained by implementing two distinct control algorithms, respectively. (<b>b</b>) Curves of state obtained by implementing two distinct control algorithms, respectively. (<b>c</b>) Curves of state obtained by implementing two distinct control algorithms, respectively. (<b>d</b>) Curves of state obtained by implementing two distinct control algorithms, respectively.</p> "> Figure 13
<p>Control input astringency comparison between Algorithm 1 and the HTMPC (<span class="html-italic">N</span> = 30). (<b>a</b>) Curves of control input <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">v</mi> <mn>1</mn> </msub> </mrow> </semantics></math> for the nominal system obtained by employing two distinct control algorithms, respectively. (<b>b</b>) Curves of control input <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">v</mi> <mn>2</mn> </msub> </mrow> </semantics></math> for the nominal system obtained by employing two distinct control algorithms, respectively.</p> ">
Abstract
:1. Introduction
- A fuzzy-based tube size controller is investigated to adjust the local error tube-scaling vector. Specifically, the controller is designed by considering the state error between the nominal and the actual systems; the error and error variety rate bounds are then established, and the fuzzy IF-THEN rules are derived. The tightened sets on state error are developed to satisfy the system constraints in the case of external disturbances and model uncertainties.
- An auxiliary control law pertaining to the scaling vector of the error tube holds greater significance. The auxiliary control law effectively mitigates interference impact on the system by considering variations in the system’s cost function.
- A theoretically rigorous and technically achievable framework for RMPC with online parameter estimation, based on a constrained DNN with symmetry properties to improve computing performance, was developed: the OPC is defined based on the parameters of online learning; the DNN structure is expanded using Dykstra’s projection algorithm to ensure the feasibility of the successor state and control input; a time-varying nominal system is generated based on the aforementioned content to fulfill the requirements of system robustness.
2. Preliminaries and Problem Formulation
2.1. Nomenclatures
2.2. Problem Formulation
- The matrix pair is known and stabilizable;
- The state can be measured at each sample time;
- The current disturbance and future disturbances are not known and can take arbitrary values.
2.3. Controller Synthesis
3. DNN-Based RMPC with a Fuzzy-Based Tube Size Controller
3.1. Error Tube and Constraint Satisfaction
- The error tube cross-section shape set (i.e., outer invariant approximation of the minimal robust positively invariant set [34]) is compact, convex, and contains the origin such that , ;
- The state tube cross-section shape set is given by ;
- The control tube cross-section shape set is given by .
- (). IF and or and THEN takes on a smaller value;
- (). IF and or and THEN takes on a slightly larger value;
- (). IF and or and THEN takes a value as small as possible.
- (). IF and or and THEN takes on a larger value;
- (). IF and THEN takes a value as large as possible.
3.2. Design of DNN-Based Nominal RMPC
3.3. The Feedback Mechanism of the Control Synthesis
3.4. The DNN-Based RMPC with a Fuzzy-Based Tube Size Controller Structure
Algorithm 1 DNN-based RMPC with a fuzzy-based tube size controller |
Given initial conditions , and weighting matrices , , determine the set . |
Compute the terminal weight matrix P and disturbance rejection gain by using (29) and (30). |
1: Randomly initialize |
2: Set learning rate |
3: for each time instant k = 0,1,2,…,N do |
4: Compute polytopic , , and |
5: if constraints (41)–(46) are satisfied then |
6: repeat calculate by using (51) |
7: until convergence |
8: else |
9: let |
10: end if |
11: Solve the optimization problem (39) and (40) based on to obtain , |
12: Compute the error variety rate and the corresponding scaling vector , then obtain the successor scaling vector by using (27), |
13: Calculate the control input as , and then implement to the system. |
14: end for |
4. Simulations and Comparison Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, H.Y.; Yan, Z.P.; Zhang, W.; Gong, Q.S.; Zhang, Y.; Zhao, L.Y. Trajectory tracking with external disturbance of bionic underwater robot based on CPG and robust model predictive control. Ocean Eng. 2022, 263, 112215. [Google Scholar] [CrossRef]
- Shi, H.Y.; Li, P.; Su, C.L.; Wang, Y.; Yu, J.X.; Cao, J.T. Robust constrained model predictive fault-tolerant control for industrial processes with partial actuator failures and interval time-varying delays. J. Process Control 2019, 75, 187–203. [Google Scholar] [CrossRef]
- Xie, Y.Y.; Liu, L.; Wu, Q.W.; Qian, Z. Robust model predictive control based voltage regulation method for a distribution system with renewable energy sources and energy storage systems. Int. J. Electr. Power Energy Syst. 2020, 118, 105749. [Google Scholar] [CrossRef]
- Ojaghi, p.; Bigdeli, N.; Rahmani, M. An LMI approach to robust model predictive control of nonlinear systems with state-dependent uncertainties. J. Process Control 2016, 47, 1–10. [Google Scholar] [CrossRef]
- Zheng, Y.P.; Li, D.W.; Xi, Y.G.; Zhang, J. Improved model prediction and RMPC design for LPV systems with bounded parameter changes. Automatica 2013, 49, 3695–3699. [Google Scholar] [CrossRef]
- Fleming, J.; Kouvaritakis, B.; Cannon, M. Robust tube MPC for linear systems with multiplicative uncertainty. IEEE Trans. Autom. Control 2015, 60, 1087–1092. [Google Scholar] [CrossRef]
- Hertneck, M.; Köhler, J.; Trimpe, S.; Allgöwer, F. Learning an approximate model predictive controller with guarantees. IEEE Control Syst. Lett. 2018, 2, 543–548. [Google Scholar] [CrossRef]
- Langson, W.; Chryssochoos, I.; Raković, S.V.; Mayne, D.Q. Robust model predictive control using tubes. Automatica 2004, 40, 125–133. [Google Scholar] [CrossRef]
- Mayne, D.Q.; Raković, S.V.; Findeisen, R.; Allgöwer, F. Robust output feedback model predictive control of constrained linear systems: Time varying case. Automatica 2009, 45, 2082–2087. [Google Scholar] [CrossRef]
- Yu, S.Y.; Maier, C.; Chen, H.; Allgöwer, F. Tube MPC scheme based on robust control invariant set with application to Lipschitz nonlinear systems. Syst. Control Lett. 2013, 62, 194–200. [Google Scholar] [CrossRef]
- Limon, D.; Alvarado, I.; Alamo, T.; Camacho, E.F. Robust tube-based MPC for tracking of constrained linear systems with additive disturbances. J. Process Control 2010, 20, 248–260. [Google Scholar] [CrossRef]
- Cannon, M.; Kouvaritakis, B.; Raković, S.V.; Cheng, Q.F. Stochastic tubes in model predictive control with probabilistic constraints. IEEE Trans. Autom. Control 2011, 56, 194–200. [Google Scholar] [CrossRef]
- Mayne, D.Q.; Seron, M.M.; Raković, S.V. Robust model predictive control of constrained linear systems with bounded disturbances. Automatica 2005, 41, 219–224. [Google Scholar] [CrossRef]
- Mayne, D.Q.; Raković, S.V.; Findeisen, R.; Allgöwer, F. Robust output feedback model predictive control of constrained linear systems. Automatica 2006, 42, 1217–1222. [Google Scholar] [CrossRef]
- Raković, S.V.; Kouvaritakis, B.; Findeisen, R.; Cannon, M. Homothetic tube model predictive control. Automatica 2012, 48, 1631–1638. [Google Scholar] [CrossRef]
- Raković, S.V.; Cheng, Q.F. Homothetic tube MPC for constrained linear difference inclusions. In Proceedings of the Chinese Control and Decision Conference (CCDC), Guiyang, China, 25–27 May 2013; pp. 754–761. [Google Scholar]
- Georgiou, A.; Tahir, F.; Jaimoukha, I.M.; Evangelou, S.A. Computationally Efficient Robust Model Predictive Control for Uncertain System Using Causal State-Feedback Parameterization. IEEE Trans. Autom. Control 2023, 68, 3822–3829. [Google Scholar] [CrossRef]
- Zhang, B.; Yan, S. Asynchronous constrained resilient robust model predictive control for markovian jump systems. IEEE Trans. Ind. Inform. 2020, 16, 7025–7034. [Google Scholar] [CrossRef]
- Olaru, S.; Dumur, D. A parameterized polyhedra approach for the explicit robust model predictive control. In Informatics in Control, Automation and Robotics II; Springer: Dordrecht, The Netherlands, 2007; pp. 217–226. [Google Scholar]
- Lin, C.Y.; Yeh, H.Y. Repetitive model predictive control based on a recurrent neural network. In Proceedings of the 2012 International Symposium on Computer, Consumer and Control, Taichung, Taiwan, 4–6 June 2012; pp. 540–543. [Google Scholar]
- Han, H.; Kim, H.; Kim, Y. An efficient hyperparameter control method for a network intrusion detection system based on proximal policy optimization. Symmetry 2022, 14, 161. [Google Scholar] [CrossRef]
- Xu, K.; Huang, D.Z.; Darve, E. Learning constitutive relations using symmetric positive definite neural networks. J. Comput. Phys. 2021, 428, 110072. [Google Scholar] [CrossRef]
- Di, M.M.; Forti, M.; Tesi, A. Existence and characterization of limit cycles in nearly symmetric neural networks. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 2002, 49, 979–992. [Google Scholar]
- Ma, C.Q.; Jiang, X.Y.; Li, P.; Liu, J. Offline computation of the explicit robust model predictive control law based on eeep neural networks. Symmetry 2023, 15, 676. [Google Scholar] [CrossRef]
- Bumroongsri, P.; Kheawhom, S. An off-line robust MPC algorithm for uncertain polytopic discrete-time systems using polyhedral invariant sets. J. Process Control 2012, 22, 975–983. [Google Scholar] [CrossRef]
- Lorenzen, M.; Cannon, M.; Allgöwer, F. Robust MPC with recursive model update. Automatica 2019, 103, 461–471. [Google Scholar] [CrossRef]
- Moreno-Mora, F.; Beckenbach, L.; Streif, S. Performance bounds of adaptive MPC with bounded parameter uncertainties. Eur. J. Control 2022, 68, 100688. [Google Scholar] [CrossRef]
- Bradtke, S.J. Reinforcement learning applied to linear quadratic regulation. Adv. Neural Inf. Process. Syst. 1992, 5, 295–302. [Google Scholar]
- Wang, H.R.; Zariphopoulou, T.; Zhou, X.Y. Reinforcement learning in continuous time and space: A stochastic control approach. J. Mach. Learn. Res. 2020, 21, 8145–8178. [Google Scholar]
- Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust region policy optimization. Int. Conf. Mach. Learn. 2015, 37, 1889–1897. [Google Scholar]
- Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017, arXiv:1707.06347. [Google Scholar]
- Kolmanovsky, I.; Gilbert, E.C. Theory and computation of disturbance invariant sets for discrete-time linear systems. Math. Probl. Eng. 1998, 4, 317–367. [Google Scholar] [CrossRef]
- Wan, Z.; Pluymers, B.; Kothare, M.V.; De Moor, B. Efficient robust constrained model predictive control with a time varying terminal constraint set. Syst. Control Lett. 2006, 55, 618–621. [Google Scholar] [CrossRef]
- Raković, S.V.; Kerrigan, E.C.; Kouramas, K.I.; Mayne, D.Q. Invariant approximations of the minimal robust positively invariant set. IEEE Trans. Autom. Control 2005, 50, 406–410. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Taniguchi, T.; Eciolaza, L.; Campos, V.; Palhares, R.; Sugeno, M. Fuzzy control systems: Past, present and future. IEEE Comput. Intell. Mag. 2019, 14, 56–58. [Google Scholar] [CrossRef]
- Zeng, X.J.; Madan, G.S. Approximation accuracy analysis of fuzzy systems as function approximators. IEEE Trans. Fuzzy Syst. 1996, 4, 44–63. [Google Scholar] [CrossRef]
- Bertsekas, D. Dynamic programming and optimal control: Volume I. Athena Sci. 2012, 4, 111–120. [Google Scholar]
- Wu, L.G.; Su, X.J.; Shi, P. Dykstra’s Algorithm for a constrained least-squares matrix problem. Numer. Linear Algebra Appl. 1996, 3, 459–471. [Google Scholar]
- Sutton, R.S.; Mcallester, D.; Singh, S.; Mansour, Y. Policy gradient methods for reinforcement learning with function approximation. Adv. Neural Info. Proc. Syst. (NIPS) 2000, 12, 1057–1063. [Google Scholar]
Network Structure | Number of Calculated Weights | Iterations | Precision |
---|---|---|---|
Symmetrical DNN | 436 | 98.03% | |
Typical DNN | 679 | 97.64% |
Control Strategy | Number of Decision Variables | Number of Inequality Constraints | Upper Bound on the Number of Critical Regions |
---|---|---|---|
Proposed Approach | 0 | ||
HTMPC |
Scaling Vector | Fuzzy Rule Control Region | ||||
---|---|---|---|---|---|
α | 0.5–0.8 | 0.9–1.2 | 0–0.4 | 1.3–1.6 | 1.7–2.0 |
Control Strategy | Mean Squared Error | |||
---|---|---|---|---|
X1 | X2 | X3 | X4 | |
Algorithm 1 | 0.257407572 | 0.250064179 | 0.081418276 | 0.150326006 |
HTMPC | 1.226454484 | 0.606667032 | 0.166021517 | 0.300930419 |
Control Strategy | Horizon Length (N) | ||||
---|---|---|---|---|---|
10 | 20 | 30 | 40 | 50 | |
Algorithm 1 | 0.003938 s | 0.004592 s | 0.004823 s | 0.004967 s | 0.005094 s |
HTMPC | 23.179 s | 27.674 s | 30.239 s | 38.098 s | 49.837 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Liu, Y.; Cao, H. Constrained DNN-Based Robust Model Predictive Control Scheme with Adjustable Error Tube. Symmetry 2023, 15, 1845. https://doi.org/10.3390/sym15101845
Yang S, Liu Y, Cao H. Constrained DNN-Based Robust Model Predictive Control Scheme with Adjustable Error Tube. Symmetry. 2023; 15(10):1845. https://doi.org/10.3390/sym15101845
Chicago/Turabian StyleYang, Shizhong, Yanli Liu, and Huidong Cao. 2023. "Constrained DNN-Based Robust Model Predictive Control Scheme with Adjustable Error Tube" Symmetry 15, no. 10: 1845. https://doi.org/10.3390/sym15101845
APA StyleYang, S., Liu, Y., & Cao, H. (2023). Constrained DNN-Based Robust Model Predictive Control Scheme with Adjustable Error Tube. Symmetry, 15(10), 1845. https://doi.org/10.3390/sym15101845