On Hankel and Inverse Hankel Determinants of Order Two for Some Subclasses of Analytic Functions
Abstract
:1. Introduction
2. Second Hankel Determinant
3. Second Hankel Determinant of Inverse Functions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 1, 111–122. [Google Scholar] [CrossRef]
- Dienes, P. The Taylor series. An introduction to the theory of functions of a complex variable. In Dover Books on Science S; Dober Publication: New York, NY, USA, 1957. [Google Scholar]
- Cantor, D.G. Power Series with Integral Coefficients. Bull. Am. Math. Soc. 1963, 69, 362–366. [Google Scholar] [CrossRef]
- Edrei, A. Sur les determinants récurrents et les singularités d’une function donnée par son development de Taylor. Compos. Math. 1940, 7, 20–88. [Google Scholar]
- Pólya, G.; Schoenberg, I.J. Remarks on de la Vallée Poussin means and convex conformal maps of the circle. Pacific J. Math. 1958, 8, 295–334. [Google Scholar] [CrossRef]
- Fekete-Szegö, M. Eine Bemerkung über ungrade schlicht Funktionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Krishna, D.V.; Ramreddy, T. Hankel determinant for starlike and convex functions of order alpha. Tbil. Math. J. 2012, 5, 65–76. [Google Scholar] [CrossRef]
- Thomas, D.K.; Tuneski, N.; Vasudevarao, A. Univalent functions. In A Primer, de Gruyter Studies in Mathematics; De Gruyter Berlin: Berlin, Germany, 2018; Volume 69. [Google Scholar]
- Sim, Y.J.; Thomas, D.K.; Zaprawa, P. The second Hankel determinant for starlike and convex functions of order alpha. Complex Variables Elliptic Equ. 2022, 67, 2423–2443. [Google Scholar] [CrossRef]
- Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. The bounds of some determinants for starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. 2018, 41, 523–535. [Google Scholar] [CrossRef]
- Schur, J. Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. J. FüR Die Reine Und Angew. Math. 1917, 147, 205–232. Available online: http://eudml.org/doc/149467 (accessed on 26 August 2023). [CrossRef]
- Ozaki, S. On the theory of multivalent functions. II. Sci. Tokyo Bunrika Daigaku Sect. A 1941, 4, 45–87. [Google Scholar]
- Umezawa, T. Analytic functions convex in one direction. J. Math. Soc. Jpn. 1952, 4, 194–202. [Google Scholar] [CrossRef]
- Seoudy, T.; Aouf, M.K. Fekete-Szegö problem for certain subclass of analytic functions with complex order defined by q-analogue of Ruscheweyh operator. Constr. Math. Anal. 2020, 3, 36–44. [Google Scholar] [CrossRef]
- Aouf, M.K.; Seoudy, T. Certain class of bi-Bazilevic functions with bounded boundary rotation involving Salăgeăn Operator. Constr. Math. Anal. 2020, 3, 139–149. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Rajasekaran, S. New sufficient conditions for starlike and univalent functions. Soochow J. Math. 1995, 21, 193–201. [Google Scholar]
- Ponnusamy, S.; Vasudevarao, A. Region of variability of two subclasses of univalent functions. J. Math. Anal. Appl. 2007, 332, 1323–1334. [Google Scholar] [CrossRef]
- Obradović, M.; Tuneski, N. Hankel determinant of second order for some classes of analytic functions. Math. Pannonica 2021, 27, 89–94. [Google Scholar] [CrossRef]
- Khatter, K.; Ravichandran, V.; Kumar, S.S. Starlike functions associated with exponential function and the lemniscate of Bernoulli. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. Mat. 2019, 113, 233–253. [Google Scholar] [CrossRef]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zeszyty Nauk. Politech. Rzeszowskiej Mat. 1996, 19, 101–105. [Google Scholar]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Sokol, J.; Thomas, D.K. Further results on a class of starlike functions related to the Bernoulli lemniscate. Houston J. Math. 2018, 44, 83–95. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, N.A.; Turki, N.B.; Lee, S.-R.; Kang, S.; Chung, J.D. On Hankel and Inverse Hankel Determinants of Order Two for Some Subclasses of Analytic Functions. Symmetry 2023, 15, 1674. https://doi.org/10.3390/sym15091674
Shah NA, Turki NB, Lee S-R, Kang S, Chung JD. On Hankel and Inverse Hankel Determinants of Order Two for Some Subclasses of Analytic Functions. Symmetry. 2023; 15(9):1674. https://doi.org/10.3390/sym15091674
Chicago/Turabian StyleShah, Nehad Ali, Naseer Bin Turki, Sang-Ro Lee, Seonhui Kang, and Jae Dong Chung. 2023. "On Hankel and Inverse Hankel Determinants of Order Two for Some Subclasses of Analytic Functions" Symmetry 15, no. 9: 1674. https://doi.org/10.3390/sym15091674
APA StyleShah, N. A., Turki, N. B., Lee, S. -R., Kang, S., & Chung, J. D. (2023). On Hankel and Inverse Hankel Determinants of Order Two for Some Subclasses of Analytic Functions. Symmetry, 15(9), 1674. https://doi.org/10.3390/sym15091674