Brinkman–Bénard Convection with Rough Boundaries and Third-Type Thermal Boundary Conditions
<p>Schematic of composite porous media.</p> "> Figure 2
<p>Variation of the critical Rayleigh number, <math display="inline"><semantics><mrow><mi>R</mi><msubsup><mi>a</mi><mi>c</mi><mo>*</mo></msubsup></mrow></semantics></math>, with various parameters. (<b>a</b>) Isothermal to adiabatic. (<b>b</b>) Free to rigid. (<b>c</b>) Clear liquid to densely packed medium, and isothermal to adiabatic. (<b>d</b>) Effect of viscosity ratio, and isothermal to adiabatic. (<b>e</b>) Clear liquid to densely packed medium, and free to rigid. (<b>f</b>) Effect of viscosity ratio, and free to rigid.</p> "> Figure 3
<p>Variation of the critical wave number, <math display="inline"><semantics><msub><mi>a</mi><mi>c</mi></msub></semantics></math>, with various parameters. (<b>a</b>) Isothermal to adiabatic. (<b>b</b>) Free to rigid. (<b>c</b>) Clear liquid to densely packed medium, and isothermal to adiabatic. (<b>d</b>) Effect of viscosity ratio, and isothermal to adiabatic. (<b>e</b>) Clear liquid to densely packed medium, and free to rigid. (<b>f</b>) Effect of viscosity ratio, and free to rigid.</p> "> Figure 4
<p>Bifurcation diagrams of the generalized Lorenz model for different boundary conditions using the initial conditions (1, 1, 1), <math display="inline"><semantics><mrow><mi mathvariant="sans-serif">Λ</mi><mo>=</mo><mn>1</mn></mrow></semantics></math>, and <math display="inline"><semantics><mrow><msup><mi>σ</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn></mrow></semantics></math>. (<b>a</b>) FIFI. (<b>b</b>) FIRI (RIFI). (<b>c</b>) RIRI. (<b>d</b>) FAFI (FIFA). (<b>e</b>) FARI (RIFA). (<b>f</b>) FIRA (RAFI). (<b>g</b>) RARI (RIRA).</p> "> Figure 5
<p>Phase space plots of the generalized Lorenz model for different boundary conditions using the initial conditions (1, 1, 1), <math display="inline"><semantics><mrow><mi mathvariant="sans-serif">Λ</mi><mo>=</mo><mn>1</mn></mrow></semantics></math>, <math display="inline"><semantics><mrow><msup><mi>σ</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn></mrow></semantics></math>, and for different values of <span class="html-italic">r</span>. (<b>a</b>) FIFI. (<b>b</b>) FIRI (RIFI). (<b>c</b>) RIRI. (<b>d</b>) FAFI (FIFA). (<b>e</b>) FARI (RIFA). (<b>f</b>) FIRA (RAFI). (<b>g</b>) RARI (RIRA).</p> "> Figure 6
<p>Ellipsoid and phase space plots of the generalized Lorenz model for different boundary conditions using the initial conditions (1, 1, 1), <math display="inline"><semantics><mrow><mi>r</mi><mo>=</mo><mn>55</mn></mrow></semantics></math>, <math display="inline"><semantics><mrow><mi mathvariant="sans-serif">Λ</mi><mo>=</mo><mn>1</mn></mrow></semantics></math>, and <math display="inline"><semantics><mrow><msup><mi>σ</mi><mn>2</mn></msup><mo>=</mo><mn>0</mn></mrow></semantics></math>. (<b>a</b>) FIFI. (<b>b</b>) FIRI (RIFI). (<b>c</b>) RIRI. (<b>d</b>) FAFI (FIFA). (<b>e</b>) FARI (RIFA). (<b>f</b>) FIRA (RAFI). (<b>g</b>) RARI (RIRA).</p> "> Figure 7
<p>The real part of the eigenvalue versus <span class="html-italic">r</span>. (<b>a</b>) FAFA. (<b>b</b>) Magnified plot of (<b>a</b>) around <math display="inline"><semantics><msub><mi>r</mi><mi>H</mi></msub></semantics></math>.</p> "> Figure 7 Cont.
<p>The real part of the eigenvalue versus <span class="html-italic">r</span>. (<b>a</b>) FAFA. (<b>b</b>) Magnified plot of (<b>a</b>) around <math display="inline"><semantics><msub><mi>r</mi><mi>H</mi></msub></semantics></math>.</p> ">
Abstract
:1. Introduction
2. Mathematical Formulation
- (a)
- the limiting case recovers the isothermal horizontal boundaries, while recovers adiabatic horizontal boundaries, and
- (b)
- the limiting case recovers stress free horizontal boundaries, while recovers the rigid horizontal boundaries.
2.1. Basic State
2.2. Perturbations of the Basic-State
2.3. Linear Stability Analysis of the Marginal State
3. Solution of the BEVP of the Linear Stability Analysis
3.1. Evaluation of Unknown, Initial, and Critical Values Using the Shooting Method
3.2. Discussion of the Normalization Condition and "Barletta Scaling"
3.3. Series Expansion of Eigenfunctions
4. Asymptotic Analysis of Both Adiabatic Boundaries (
5. Weakly Nonlinear Stability Analysis: Derivation of the Generalized Lorenz Model
5.1. Symmetric Nature
5.2. Dissipative Nature
5.3. Ellipsoidal Bound on the Solution (Trajectory)
5.4. Energy-Conserving Nature of the System
5.5. Prediction of the Onset of Chaos Using the Generalized Lorenz Model
6. Results and Discussion
- Brinkman–Bénard convection problem with 16 different boundary conditions;
- Rayleigh–Bénard convection problem with 16 different boundary conditions (see, Table 2 for a list of these conditions);
- Darcy–Bénard convection problem with 4 different temperature boundary conditions.
6.1. Discussion of the Results from Linear Theory
6.2. Discussion of Results Using Nonlinear Stability Theory
7. Summary
- (a)
- It is possible to unify the study of linear and weakly nonlinear regimes of various related Rayleigh–Bénard problems with identical governing equations but different boundary conditions;
- (b)
- Using Maclaurin series representation, it is possible to have accurate representations for the eigenfunctions of both the conductive mode (linear theory) and convective modes (nonlinear theory);
- (c)
- The generalized Lorenz model has all the characteristics of the classical Lorenz model;
- (d)
- Classical linear and nonlinear stability analyses can be performed using the generalized Lorenz model, to obtain information on the onset of regular convection, chaos, and periodic motions;
- (e)
- The effect of increasing values of the Biot and slip Darcy numbers is to stabilize the system and decrease the cell size at the onset of regular convection;
- (f)
- The effect of increasing the values of the Biot and slip Darcy numbers on the onset of chaos is opposite;
- (g)
- The general velocity and thermal boundary conditions used in this paper succeeded in bridging the gap between the results of free and rigid boundaries, and also those of isothermal and adiabatic boundary conditions;
- (h)
- By analogy between the results of the present general study and its corresponding Taylor–Couette problem [43], the results of the linear theory for the latter problem are as good as known;
- (i)
- This analogy has been proven for linear theory, and further investigation is required to prove/disprove the analogy in the nonlinear regime.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Principle of Exchange of Stabilities
References
- Muskat, M. The Flow of Fluids through Porous Media; McGraw Hill: New York, NY, USA, 1937. [Google Scholar]
- Scheidegger, M. The Physics of Flow through Porous Media; MacMillan: New York, NY, USA, 1957. [Google Scholar]
- Beck, J.L. Convection in a box of porous material saturated with fluid. Phys. Fluids 1972, 15, 1377–1383. [Google Scholar] [CrossRef]
- Vadasz, P. Free Convection in Rotating Porous Media: In Transport Phenomena in Porous Media; Elsevier: Pergamon, Turkey, 1998. [Google Scholar]
- Crolet, J.M. Computation Methods for Flow and Transport in Porous Media; Springer: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Ingham, D.B.; Pop, I. Transport Phenomena in Porous Media; Elsevier: Oxford, UK, 2005. [Google Scholar]
- Vafai, K. Handbook of Porous Media; CRC Press: London, UK, 2005. [Google Scholar]
- Nield, D.A.; Bejan, A. Convection in Porous Media; Springer Science Business Media: New York, NY, USA, 2006. [Google Scholar]
- Straughan, B. The Energy Method, Stability, and Nonlinear Convection; Springer: New York, NY, USA, 2004. [Google Scholar]
- Straughan, B. Stability and Wave Motion in Porous Media; Springer: New York, NY, USA, 2008. [Google Scholar]
- Kaviany, M. Principles of Heat Transfer in Porous Media; Springer Science and Business Media: New York, NY, USA, 2012. [Google Scholar]
- Liu, S.; Jiang, L. From Rayleigh-Bénard convection to porous-media convection: How porosity affects heat transfer and flow structure. J. Fluid Mech. 2020, 895, A18. [Google Scholar] [CrossRef]
- Herring, J. Investigation of Problems in Thermal Convection: Rigid Boundaries. J. Atmos. Sci. 1964, 21, 277–290. [Google Scholar] [CrossRef]
- Kvernvold, O. Rayleigh-Bénard convection with one free and one rigid boundary. Geophys. Astrophys. Fluid Dyn. 1197, 92, 273–294. [Google Scholar] [CrossRef]
- Mizushima, J. Mechanism of mode selection in Rayleigh-Bénard convection with free-rigid boundaries. Fluid Dyn. Res. 1993, 11, 297–311. [Google Scholar] [CrossRef]
- Webber, M. The destabilizing effect of boundary slip on Bénard convection. Math. Methods Appl. Sci. 2006, 29, 819–838. [Google Scholar] [CrossRef]
- Kanchana, C.; Siddheshwar, P.G.; Yi, Z. The effect of boundary-conditions on the onset of chaos in Rayleigh-Bénard convection using energy-conserving Lorenz models. Appl. Math. Model. 2020, 88, 349–366. [Google Scholar] [CrossRef]
- Haragus, M.; Iooss, G. Domain Walls for the Bénard–Rayleigh Convection Problem with Rigid–Free boundary-conditions. J. Dyn. Differ. Equ. 2021, 34, 1–23. [Google Scholar] [CrossRef]
- Beavers, G.S.; Joseph, D.D. boundary-conditions at a naturally permeable wall. J. Fluid Mech. 1967, 30, 197–207. [Google Scholar] [CrossRef]
- Beavers, G.S.; Sparrow, E.M.; Masha, B.A. boundary-conditions at a porous surface which bounds a fluid flow. AIChE J. 1974, 20, 596–597. [Google Scholar] [CrossRef]
- Saffman, P.G. On the boundary-condition at the interface of a porous medium. Stud. Appl. Math. 1971, 1, 93–101. [Google Scholar] [CrossRef]
- Richardson, S. A model for the boundary-condition of a porous material Part 2. J. Fluid Mech. 1971, 49, 327–336. [Google Scholar] [CrossRef]
- Taylor, G.I. A model for the boundary-condition of a porous material, Part 1. J. Fluid Mech. 1971, 49, 319–326. [Google Scholar] [CrossRef]
- Goldstein, M.E.; Braun, W.H. Effect of Velocity Slip at a Porous Boundary on the Performance of an Incompressible Porous Bearing; NASA Technical Note; TN D-6181; NASA: Washington, DC, USA, 1971. [Google Scholar]
- Nield, D.A. Onset of convection in a fluid layer overlying a layer of a porous medium. J. Fluid Mech. 1977, 81, 513–522. [Google Scholar] [CrossRef]
- Pillatsis, G.; Taslim, M.E.; Narusawa, U. Thermal instability of a fluid saturated porous medium bounded by thin fluid layers. ASME J. Heat Mass Transf. 1987, 109, 677–682. [Google Scholar] [CrossRef]
- Givler, R.C.; Altobelli, S.A. A determination of the effective viscosity for the Brinkman–Forchheimer flow model. J. Fluid Mech. 1994, 258, 355–370. [Google Scholar] [CrossRef]
- Jäger, W.; Mikelic, A. On the interface boundary-condition of Beavers, Joseph and Saffman. SIAM J. Appl. Math. 2000, 60, 1111–1127. [Google Scholar]
- Barletta, A.; Storesletten, L. Onset of convection in a porous rectangular channel with external heat transfer to upper and lower fluid environments. Transp. Porous Media 2012, 94, 659–681. [Google Scholar] [CrossRef] [Green Version]
- Bolaños, S.J.; Vernescu, B. Derivation of the Navier slip and slip length for viscous flows over a rough boundary. Phys. Fluids 2017, 29, 057103. [Google Scholar] [CrossRef]
- Sahraoui, M.; Kaviany, M. Slip and no-slip velocity boundary-conditions at the interface of porous, plain media. Int. J. Heat Mass Transf. 1992, 35, 927–943. [Google Scholar] [CrossRef] [Green Version]
- Sahraoui, M.; Kaviany, M. Slip and no-slip temperature boundary-conditions at the interface of porous, plain media: Conduction. Int. J. Heat Mass Transf. 1993, 36, 1019–1033. [Google Scholar] [CrossRef] [Green Version]
- Sahraoui, M.; Kaviany, M. Slip and no-slip temperature boundary-conditions at the interface of porous, plain media: Convection. Int. J. Heat Mass Transf. 1994, 37, 1029–1044. [Google Scholar] [CrossRef] [Green Version]
- Siddheshwar, P.G. Convective instability of ferromagnetic fluids bounded by fluid-permeable, magnetic boundaries. J. Magn. Magn. Mater. 1995, 149, 148–150. [Google Scholar] [CrossRef] [Green Version]
- Narayana, M.; Shekar, M.; Siddheshwar, P.G.; Anuraj, N.V. On the differential transform method of solving boundary eigenvalue problems: An illustration. J. Appl. Math. Mech. Z. Für Angew. Math. Mech. 2021, 101, e202000114. [Google Scholar] [CrossRef]
- Heena, F.; Siddheshwar, P.G.; Idris, R. Effects of rough boundaries on Rayleigh–Bénard Convection in nanofluids. ASME J. Heat Mass Transf. 2023, 145, 062602. [Google Scholar]
- Celli, M.; Kuznetsov, A.V. A new hydrodynamic boundary-condition simulating the effect of rough boundaries on the onset of Rayleigh-Bénard convection. Int. J. Heat Mass Transf. 2018, 116, 581–586. [Google Scholar] [CrossRef]
- Sharma, M.; Chand, K.; De, A.K. Investigation of flow dynamics and heat transfer mechanism in turbulent Rayleigh-Bénard convection over multi-scale rough surface. J. Fluid Mech. 2022, 941, A20. [Google Scholar] [CrossRef]
- Platten, J.K.; Legros, J.C. Convection in Liquids; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Siddheshwar, P.G.; Revathi, B.R. Shooting method for good estimates of the eigenvalue in the Rayleigh-Bénard-Marangoni convection problem with general boundary-conditions on velocity and temperature. In Proceedings of the ASME 2009 International Mechanical Engineering Congress & Exposition, Lake Buena Vista, FL, USA, 13–19 November 2009. Art. No. IMECE2009-12761. [Google Scholar]
- Sparrow, C. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors; Springer: Berlin/Heidelberg, Germany, 1982. [Google Scholar]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Koschmieder, E.L. Bénard Cells and Taylor Vortices; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
Type of Lower Boundary | Initial and Normalization Condition |
---|---|
Free-Isothermal (FIFI, FIFA, FIRI, FIRA) | , |
. | |
Free-Adiabatic (FAFI, FAFA, FARI, FARA) | , |
. | |
Rigid-Isothermal (RIFI, RIFA, RIRI, RIRA) | , |
. | |
Rigid-Adiabatic (RAFI, RAFA, RARI, RARA) | , |
. |
BC | Parameters’ Values | Present Study | Platten and Legros [39] | Kanchana et al. [17] | |||
---|---|---|---|---|---|---|---|
RIRI |
| 1707.75 | 3.116 | 1708.35 | 3.004 | 1707.762 | 3.120 |
RARI |
| 1295.77 | 2.552 | 1285.56 | 2.752 | 1295.781 | 2.550 |
RIRA |
| 1295.77 | 2.552 | 1250 | 2.271 | 1295.781 | 2.550 |
FIRI |
| 1100.64 | 2.682 | 1091.57 | 2.672 | 1100.657 | 2.680 |
RIFI |
| 1100.64 | 2.682 | 1064.44 | 2.552 | 1100.657 | 2.680 |
RAFI |
| 816.74 | 2.215 | 886.11 | 2.221 | 816.748 | 2.210 |
FIRA |
| 816.74 | 2.215 | 854.62 | 2.052 | 816.748 | 2.210 |
FARI |
| 668.997 | 2.086 | 679.76 | 2.055 | 669.001 | 2.050 |
RIFA |
| 668.997 | 2.086 | 705.47 | 2.067 | 669.001 | 2.050 |
FIFI |
| 657.51 | 2.221 | 657.51 | 2.221 | 657.511 | 2.220 |
FAFI |
| 384.692 | 1.758 | 350.35 | 1.388 | 384.693 | 1.760 |
FIFA |
| 384.692 | 1.758 | 385.59 | 1.218 | 384.693 | 1.760 |
RARA |
| 720.00 | 0 | 720.00 | 0 | 722.89 | 0 |
RAFA |
| 320.00 | 0 | 320.00 | 0 | 328.46 | 0.322 |
FARA |
| 320.00 | 0 | 320.00 | 0 | 321.990 | 0.329 |
FAFA |
| 120.00 | 0 | 120.00 | 0 | 128.81 | 0.425 |
10 | 0.76601 | 792.56 | 10 | 0.69497 | 782.20 | ||
0.76622 | 793.08 | 0.69594 | 783.36 | ||||
0.76832 | 798.20 | 0.70509 | 794.39 | ||||
0.4 | 0.77484 | 814.47 | 0.4 | 0.72956 | 825.97 | ||
0.6 | 0.77883 | 824.68 | 0.6 | 0.74220 | 843.58 | ||
1 | 0.78607 | 843.75 | 1 | 0.76179 | 872.92 | ||
2 | 0.80077 | 884.80 | 2 | 0.79235 | 924.63 | ||
3 | 0.81200 | 918.54 | 3 | 0.81005 | 958.81 | ||
4 | 0.82083 | 946.80 | 4 | 0.82162 | 983.29 | ||
5 | 0.82796 | 970.84 | 5 | 0.82976 | 1001.75 | ||
10 | 0.84959 | 1052.14 | 10 | 0.84959 | 1052.14 | ||
0.88610 | 1236.60 | 0.87262 | 1125.31 | ||||
0.89121 | 1271.03 | 0.87522 | 1135.10 | ||||
0.89180 | 1275.19 | 0.87551 | 1136.22 | ||||
10 | 0.76601 | 792.56 | 10 | 0.69497 | 782.20 | ||
0.76622 | 793.08 | 0.69595 | 783.36 | ||||
0.76832 | 798.20 | 0.70509 | 794.39 | ||||
0.4 | 0.77484 | 814.47 | 0.4 | 0.72956 | 825.97 | ||
0.6 | 0.77883 | 824.68 | 0.6 | 0.74220 | 843.58 | ||
1 | 0.78607 | 843.75 | 1 | 0.76179 | 872.92 | ||
2 | 0.80077 | 884.80 | 2 | 0.79234 | 924.63 | ||
3 | 0.81200 | 918.54 | 3 | 0.81005 | 958.81 | ||
4 | 0.82083 | 946.80 | 4 | 0.82162 | 983.29 | ||
5 | 0.82796 | 970.84 | 5 | 0.82976 | 1001.75 | ||
10 | 0.84959 | 1052.14 | 10 | 0.84959 | 1052.14 | ||
0.88610 | 1236.60 | 0.87262 | 1125.31 | ||||
0.89121 | 1271.03 | 0.87522 | 1135.10 | ||||
0.89180 | 1275.19 | 0.87551 | 1136.22 | ||||
0.67562 | 570.81 | 0.13434 | 415.34 | ||||
0.67612 | 571.74 | 0.23672 | 435.30 | ||||
0.68099 | 580.93 | 0.40871 | 500.27 | ||||
0.4 | 0.4 | 0.69586 | 610.05 | 0.4 | 0.4 | 0.55208 | 596.23 |
0.6 | 0.6 | 0.70474 | 628.30 | 0.6 | 0.6 | 0.59793 | 638.13 |
1 | 1 | 0.72052 | 662.37 | 1 | 1 | 0.65594 | 701.42 |
2 | 2 | 0.75150 | 736.11 | 2 | 2 | 0.73043 | 804.34 |
3 | 3 | 0.77445 | 797.43 | 3 | 3 | 0.76895 | 870.27 |
4 | 4 | 0.79225 | 849.53 | 4 | 4 | 0.79306 | 917.36 |
5 | 5 | 0.80650 | 894.51 | 5 | 5 | 0.80970 | 953.04 |
10 | 10 | 0.84959 | 1052.14 | 10 | 10 | 0.84959 | 1052.14 |
0.92460 | 1455.50 | 0.89578 | 1203.54 | ||||
0.93558 | 1540.23 | 0.90104 | 1224.71 | ||||
0.93684 | 1550.72 | 0.90163 | 1227.16 |
Type of Boundaries | Present Study | Nield and Bejan [8] | ||
---|---|---|---|---|
Isothermal–Isothermal | 3.1416 | 39.4783 | 3.14 | 39.48 |
Isothermal–Adiabatic | 2.3263 | 27.0976 | 2.33 | 27.10 |
Adiabatic–Isothermal | 2.3263 | 27.0976 | - | - |
Adiabatic–Adiabatic | 0.005 | 12.0013 | 0 | 12 |
Coefficients of the Lorenz System | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
10 | 21.8455 | 0.0275630 | 12.7768 | 1.0473500 | 31.3206 | 1.6084 | 2.45136 | 17.0977 | 28.2521 | |
21.8623 | 0.0275663 | 12.7798 | 1.0498800 | 31.3238 | 1.60835 | 2.45104 | 17.1070 | 28.2587 | ||
22.0362 | 0.0276072 | 12.8116 | 1.0750500 | 31.3630 | 1.60815 | 2.44802 | 17.2002 | 28.3267 | ||
0.4 | 22.5837 | 0.0277281 | 12.9102 | 1.1609500 | 31.4934 | 1.60733 | 2.43942 | 17.4930 | 28.5448 | |
0.6 | 22.9231 | 0.0277962 | 12.9707 | 1.2199800 | 31.5795 | 1.60669 | 2.43468 | 17.6729 | 28.6818 | |
1 | 23.5490 | 0.0279101 | 13.0823 | 1.3422100 | 31.7525 | 1.60546 | 2.42713 | 18.0006 | 28.9371 | |
2 | 24.8594 | 0.0280961 | 13.3122 | 0.4181370 | 32.1667 | 1.60212 | 2.41633 | 18.6742 | 29.4845 | |
3 | 25.8944 | 0.0281910 | 13.4922 | 0.2265190 | 32.5472 | 1.59884 | 2.41230 | 19.1922 | 29.9251 | |
4 | 26.7298 | 0.0282318 | 13.6361 | 0.1525550 | 32.8891 | 1.59569 | 2.41192 | 19.6023 | 30.2857 | |
5 | 27.4177 | 0.0282411 | 13.7542 | 0.1151720 | 33.1956 | 1.59281 | 2.41349 | 19.9341 | 30.5850 | |
10 | 29.5728 | 0.0281073 | 14.1238 | 0.0561866 | 34.3103 | 1.58172 | 2.42925 | 20.9382 | 31.5317 | |
33.3935 | 0.0270043 | 14.8052 | 0.0211920 | 37.0307 | 1.55216 | 2.50119 | 22.5552 | 33.2118 | ||
33.9318 | 0.0266963 | 14.9104 | 0.0186483 | 37.5320 | 1.54639 | 2.51717 | 22.7572 | 33.4430 | ||
33.9923 | 0.0266573 | 14.9228 | 0.0183795 | 37.5915 | 1.5457 | 2.51906 | 22.7787 | 33.4682 | ||
10 | 21.8446 | 0.0275619 | 12.7768 | 0.0620477 | 31.3201 | 1.60838 | 2.45132 | 17.0971 | 28.2514 | |
21.8621 | 0.0275660 | 12.7799 | 0.0620323 | 31.3237 | 1.60834 | 2.45101 | 17.1067 | 28.2584 | ||
22.0362 | 0.0276073 | 12.8115 | 0.0618777 | 31.3627 | 1.60813 | 2.44802 | 17.2004 | 28.3269 | ||
0.4 | 22.5836 | 0.0277279 | 12.9101 | 0.0613983 | 31.4930 | 1.60731 | 2.43942 | 17.4930 | 28.5448 | |
0.6 | 22.9229 | 0.0277961 | 12.9709 | 0.0611065 | 31.5799 | 1.60671 | 2.43467 | 17.6726 | 28.6815 | |
1 | 23.5491 | 0.0279102 | 13.0821 | 0.0605773 | 31.7522 | 1.60544 | 2.42714 | 18.0009 | 28.9374 | |
2 | 24.8593 | 0.0280959 | 13.3124 | 0.0595116 | 32.1669 | 1.60213 | 2.41632 | 18.6738 | 29.4842 | |
3 | 25.8944 | 0.0281910 | 13.4922 | 0.0587126 | 32.5471 | 1.59884 | 2.41230 | 19.1922 | 29.9251 | |
4 | 26.7302 | 0.0282322 | 13.6361 | 0.0580950 | 32.8894 | 1.59571 | 2.41194 | 19.6025 | 30.2859 | |
5 | 27.4179 | 0.0282413 | 13.7542 | 0.0576061 | 33.1957 | 1.59281 | 2.41350 | 19.9343 | 30.5851 | |
10 | 29.5728 | 0.0281073 | 14.1238 | 0.0561866 | 34.3103 | 1.58172 | 2.42925 | 20.9382 | 31.5317 | |
33.3923 | 0.0270033 | 14.8052 | 0.0540763 | 37.0301 | 1.55214 | 2.50116 | 22.5544 | 33.2110 | ||
33.9316 | 0.0266961 | 14.9103 | 0.0538163 | 37.5318 | 1.54638 | 2.51718 | 22.7572 | 33.4430 | ||
33.9926 | 0.0266569 | 14.9224 | 0.0537878 | 37.5915 | 1.54566 | 2.51913 | 22.7795 | 33.4692 | ||
15.3800 | 0.0269441 | 11.4402 | 1.0373900 | 28.3338 | 1.64971 | 2.47669 | 13.4439 | 25.5203 | ||
15.4116 | 0.0269554 | 11.4470 | 1.0401700 | 28.3428 | 1.64962 | 2.47599 | 13.4634 | 25.5310 | ||
15.7209 | 0.0270617 | 11.5131 | 1.0681100 | 28.4282 | 1.64851 | 2.46919 | 13.6548 | 25.6376 | ||
0.4 | 0.4 | 16.6918 | 0.0273614 | 11.7176 | 1.1625000 | 28.7082 | 1.64479 | 2.45000 | 14.2450 | 25.9894 |
0.6 | 0.6 | 17.2938 | 0.0275248 | 11.8422 | 1.2265100 | 28.8921 | 1.64245 | 2.43976 | 14.6036 | 26.2190 |
1 | 1 | 18.4023 | 0.0277823 | 12.0675 | 1.3575300 | 29.2502 | 1.63793 | 2.42388 | 15.2495 | 26.6590 |
2 | 2 | 20.7339 | 0.0281668 | 12.5258 | 0.4260500 | 30.0877 | 1.62784 | 2.40206 | 16.5529 | 27.6346 |
3 | 3 | 22.5984 | 0.0283393 | 12.8788 | 0.2311810 | 30.8385 | 1.61908 | 2.39451 | 17.5469 | 28.4440 |
4 | 4 | 24.1284 | 0.0284021 | 13.1613 | 0.1555150 | 31.5103 | 1.61156 | 2.39415 | 18.3328 | 29.1179 |
5 | 5 | 25.4075 | 0.0284038 | 13.3928 | 0.1171170 | 32.1097 | 1.60497 | 2.39752 | 18.9709 | 29.6847 |
10 | 10 | 29.5728 | 0.0281073 | 14.1239 | 0.0561862 | 34.3106 | 1.58174 | 2.42926 | 20.9381 | 31.5316 |
37.8708 | 0.0260191 | 15.5322 | 0.0197446 | 40.0625 | 1.52524 | 2.57933 | 24.3822 | 35.1167 | ||
39.1744 | 0.0254341 | 15.7582 | 0.0170888 | 41.2115 | 1.51432 | 2.61524 | 24.8597 | 35.6609 | ||
39.3268 | 0.0253604 | 15.7849 | 0.0168051 | 41.3522 | 1.51302 | 2.61972 | 24.9142 | 35.7242 |
Coefficients of Lorenz System | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
10 | 29.1037 | 0.0372074 | 7.20571 | 0.0366865 | 31.0650 | 1.20452 | 4.31117 | 40.3898 | 54.9233 | |
29.1028 | 0.0371515 | 7.23585 | 0.0367666 | 31.0602 | 1.20599 | 4.29255 | 40.2203 | 54.7124 | ||
29.1179 | 0.0366544 | 7.52711 | 0.037520 | 31.0242 | 1.22037 | 4.12166 | 38.6841 | 52.7957 | ||
0.4 | 29.1582 | 0.0353018 | 8.36365 | 0.0396794 | 30.9802 | 1.26256 | 3.70415 | 34.863 | 48.0508 | |
0.6 | 29.1850 | 0.0345965 | 8.83169 | 0.0408873 | 30.9989 | 1.28675 | 3.50996 | 33.0457 | 45.8073 | |
1 | 29.2341 | 0.0334898 | 9.61121 | 0.0429139 | 31.1066 | 1.32794 | 3.23649 | 30.4167 | 42.5844 | |
2 | 29.3284 | 0.0317191 | 10.9737 | 0.0465625 | 31.5566 | 1.40233 | 2.87565 | 26.726 | 38.1312 | |
3 | 29.3946 | 0.0306572 | 11.8568 | 0.0490450 | 32.0571 | 1.45194 | 2.70369 | 24.7913 | 35.8509 | |
4 | 29.4409 | 0.0299412 | 12.4751 | 0.0508662 | 32.5204 | 1.48711 | 2.60681 | 23.5997 | 34.4755 | |
5 | 29.4782 | 0.0294267 | 12.9320 | 0.0522604 | 32.9310 | 1.51330 | 2.54648 | 22.7949 | 33.5632 | |
10 | 29.5728 | 0.0281073 | 14.1238 | 0.0561866 | 34.3103 | 1.58172 | 2.42925 | 20.9382 | 31.5317 | |
29.7030 | 0.0263954 | 15.6651 | 0.0621767 | 36.9439 | 1.66819 | 2.35836 | 18.9613 | 29.5542 | ||
29.7194 | 0.0261822 | 15.8504 | 0.0630031 | 37.3445 | 1.67818 | 2.35605 | 18.7499 | 29.3613 | ||
29.7201 | 0.0261570 | 15.8709 | 0.0631004 | 37.3894 | 1.67922 | 2.35585 | 18.7262 | 29.3399 | ||
10 | 29.1030 | 0.0372064 | 7.20560 | 0.0486803 | 31.0649 | 1.20451 | 4.31121 | 40.3894 | 54.9230 | |
29.1039 | 0.0371528 | 7.23609 | 0.0487350 | 31.0599 | 1.20600 | 4.29236 | 40.2204 | 54.7120 | ||
29.1165 | 0.0366526 | 7.52707 | 0.0492362 | 31.0239 | 1.22036 | 4.12165 | 38.6824 | 52.7941 | ||
0.4 | 29.1589 | 0.0353027 | 8.36374 | 0.0505528 | 30.9811 | 1.26257 | 3.70421 | 34.8635 | 48.0514 | |
0.6 | 29.1843 | 0.0345957 | 8.83163 | 0.0512204 | 30.9977 | 1.28674 | 3.50986 | 33.0452 | 45.8065 | |
1 | 29.2338 | 0.0334894 | 9.61128 | 0.0522272 | 31.1063 | 1.32794 | 3.23643 | 30.4161 | 42.5837 | |
2 | 29.3288 | 0.0317196 | 10.9737 | 0.0537338 | 31.5570 | 1.40235 | 2.8757 | 26.7265 | 38.1318 | |
3 | 29.3944 | 0.0306570 | 11.8567 | 0.0545607 | 32.0570 | 1.45192 | 2.70371 | 24.7914 | 35.8511 | |
4 | 29.4414 | 0.0299416 | 12.4752 | 0.0550759 | 32.5205 | 1.48711 | 2.60681 | 23.5999 | 34.4757 | |
5 | 29.4781 | 0.0294266 | 12.9320 | 0.0554203 | 32.9312 | 1.51331 | 2.54650 | 22.7947 | 33.5631 | |
10 | 29.5728 | 0.0281073 | 14.1238 | 0.0561866 | 34.3103 | 1.58172 | 2.42925 | 20.9382 | 31.5317 | |
29.7029 | 0.0263953 | 15.6650 | 0.0568236 | 36.9433 | 1.66817 | 2.35834 | 18.9614 | 29.5542 | ||
29.7186 | 0.0261815 | 15.8503 | 0.0568663 | 37.3437 | 1.67815 | 2.35602 | 18.7495 | 29.3609 | ||
29.7201 | 0.0261570 | 15.8709 | 0.0568710 | 37.3895 | 1.67923 | 2.35585 | 18.7261 | 29.3399 | ||
29.9469 | 0.0721017 | 0.18038 | 0.0075992 | 29.0540 | 1.00387 | 161.073 | 1660.23 | 2021.65 | ||
29.7094 | 0.0682501 | 0.57548 | 0.0133728 | 29.0095 | 1.01288 | 50.4096 | 516.258 | 632.670 | ||
29.2270 | 0.0584225 | 1.86821 | 0.0231062 | 28.8743 | 1.04692 | 15.4556 | 156.444 | 195.459 | ||
0.4 | 0.4 | 28.9703 | 0.0485894 | 3.83446 | 0.0315834 | 28.7699 | 1.10935 | 7.50299 | 75.5525 | 96.9687 |
0.6 | 0.6 | 28.9491 | 0.0453658 | 4.72113 | 0.0344888 | 28.7900 | 1.1409 | 6.09812 | 61.3181 | 79.6347 |
1 | 1 | 28.9757 | 0.0413102 | 6.09413 | 0.0384156 | 28.9332 | 1.19337 | 4.74772 | 47.5469 | 62.8980 |
2 | 2 | 29.1104 | 0.0361915 | 8.40381 | 0.0440987 | 29.5681 | 1.29092 | 3.51841 | 34.6395 | 47.3320 |
3 | 3 | 29.2262 | 0.0335830 | 9.92005 | 0.0474722 | 30.3189 | 1.36108 | 3.05633 | 29.4618 | 41.1891 |
4 | 4 | 29.3155 | 0.0319563 | 11.0126 | 0.0497992 | 31.0588 | 1.41469 | 2.82031 | 26.6201 | 37.8761 |
5 | 5 | 29.3841 | 0.0308321 | 11.8412 | 0.0515263 | 31.7464 | 1.45706 | 2.68101 | 24.8150 | 35.8077 |
10 | 10 | 29.5728 | 0.0281073 | 14.1238 | 0.0561866 | 34.3103 | 1.58172 | 2.42925 | 20.9382 | 31.5317 |
29.8318 | 0.0247867 | 17.4254 | 0.0629192 | 40.3437 | 1.78355 | 2.31523 | 17.1198 | 27.8229 | ||
29.8621 | 0.0243830 | 17.8561 | 0.0638208 | 41.4017 | 1.81174 | 2.31863 | 16.7237 | 27.4992 | ||
29.8672 | 0.0243384 | 17.9056 | 0.0639213 | 41.5289 | 1.81507 | 2.31932 | 16.6803 | 27.4651 |
BC | FIFI | RIFI | FIRI | RIRI | FAFI | FIFA | FARI | RIFA | RAFI | FIRA | RARI | RIRA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Present study | 24.74 | 26.20 | 26.20 | 30.00 | 32.64 | 32.64 | 42.21 | 42.21 | 44.37 | 44.37 | 53.87 | 53.87 |
Kanchana et al. [17] | 24.74 | 29.13 | 27.09 | 35.28 | 43.38 | 51.00 | 43.08 | 42.46 | 46.97 | 45.52 | 45.35 | 63.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddheshwar, P.G.; Narayana, M.; Laroze, D.; Kanchana, C. Brinkman–Bénard Convection with Rough Boundaries and Third-Type Thermal Boundary Conditions. Symmetry 2023, 15, 1506. https://doi.org/10.3390/sym15081506
Siddheshwar PG, Narayana M, Laroze D, Kanchana C. Brinkman–Bénard Convection with Rough Boundaries and Third-Type Thermal Boundary Conditions. Symmetry. 2023; 15(8):1506. https://doi.org/10.3390/sym15081506
Chicago/Turabian StyleSiddheshwar, Pradeep G., Mahesha Narayana, David Laroze, and C. Kanchana. 2023. "Brinkman–Bénard Convection with Rough Boundaries and Third-Type Thermal Boundary Conditions" Symmetry 15, no. 8: 1506. https://doi.org/10.3390/sym15081506
APA StyleSiddheshwar, P. G., Narayana, M., Laroze, D., & Kanchana, C. (2023). Brinkman–Bénard Convection with Rough Boundaries and Third-Type Thermal Boundary Conditions. Symmetry, 15(8), 1506. https://doi.org/10.3390/sym15081506