Numerical Analysis of Time-Fractional Porous Media and Heat Transfer Equations Using a Semi-Analytical Approach
<p>The solution behavior of the approximate solution for <math display="inline"><semantics><mrow><msub><mi>ϑ</mi><mn>4</mn></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math> at <math display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow></semantics></math> and the exact solution. (<b>a</b>) The approximate solution for Equation (<a href="#FD20-symmetry-15-01374" class="html-disp-formula">20</a>) at <math display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>0.6</mn></mrow></semantics></math>. (<b>b</b>) The approximate solution for Equation (<a href="#FD20-symmetry-15-01374" class="html-disp-formula">20</a>) at <math display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>0.8</mn></mrow></semantics></math>. (<b>c</b>) The approximate solution for Equation (<a href="#FD20-symmetry-15-01374" class="html-disp-formula">20</a>) at <math display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow></semantics></math>. (<b>d</b>) The exact solution for Equation (<a href="#FD21-symmetry-15-01374" class="html-disp-formula">21</a>).</p> "> Figure 2
<p>The physical behavior of the approximate solution <math display="inline"><semantics><mrow><msub><mi>ϑ</mi><mn>4</mn></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math> for <math display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0.4</mn><mo>,</mo><mn>0.6</mn><mo>,</mo><mn>0.8</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math> compared with the exact solution.</p> "> Figure 3
<p>The solution behavior of the approximate solution for <math display="inline"><semantics><mrow><msub><mi>ϑ</mi><mn>4</mn></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math> at <math display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow></semantics></math> and the exact solution. (<b>a</b>) The approximate solution for Equation (<a href="#FD29-symmetry-15-01374" class="html-disp-formula">29</a>) at <math display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>0.25</mn></mrow></semantics></math>. (<b>b</b>) The approximate solution for Equation (<a href="#FD29-symmetry-15-01374" class="html-disp-formula">29</a>) at <math display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>0.5</mn></mrow></semantics></math>. (<b>c</b>) The approximate solution for Equation (<a href="#FD29-symmetry-15-01374" class="html-disp-formula">29</a>) at <math display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>0.75</mn></mrow></semantics></math>. (<b>d</b>) The approximate solution for Equation (<a href="#FD29-symmetry-15-01374" class="html-disp-formula">29</a>) at <math display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow></semantics></math>.</p> "> Figure 4
<p>The physical behavior of the approximate solution <math display="inline"><semantics><mrow><msub><mi>ϑ</mi><mn>4</mn></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math> for <math display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0.25</mn><mo>,</mo><mn>0.5</mn><mo>,</mo><mn>0.75</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math> compared with the exact solution.</p> ">
Abstract
:1. Introduction
2. Preliminaries of T
3. Formulation of HPTS
4. Convergence Analysis
- (i)
- By the property of mathematical induction, let ; we have
- (ii)
- As and ,
5. Numerical Applications
5.1. Problem 1
5.2. Problem 2
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arrigo, D.J. Symmetry Analysis of Differential Equations: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Hussain, A.; Bano, S.; Khan, I.; Baleanu, D.; Sooppy Nisar, K. Lie symmetry analysis, explicit solutions and conservation laws of a spatially two-dimensional Burgers–Huxley equation. Symmetry 2020, 12, 170. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Kumar, D. Solitary wave solutions of (3+1)-dimensional extended Zakharov–Kuznetsov equation by Lie symmetry approach. Comput. Math. Appl. 2019, 77, 2096–2113. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, D.; Kumar, A. Lie symmetry analysis for obtaining the abundant exact solutions, optimal system and dynamics of solitons for a higher-dimensional Fokas equation. Chaos Solitons Fractals 2021, 142, 110507. [Google Scholar] [CrossRef]
- Rashed, A. Analysis of (3+1)-dimensional unsteady gas flow using optimal system of Lie symmetries. Math. Comput. Simul. 2019, 156, 327–346. [Google Scholar] [CrossRef]
- Liu, M.Z.; Cao, X.Q.; Zhu, X.Q.; Liu, B.N.; Peng, K.C. Variational Principles and solitary wave solutions of Generalized Nonliner Schrodinger Equation in the Ocean. J. Appl. Comput. Mech. 2021, 7, 1639–1648. [Google Scholar]
- Song, S.; Chong, D.; Zhao, Q.; Chen, W.; Yan, J. Numerical investigation of the condensation oscillation mechanism of submerged steam jet with high mass flux. Chem. Eng. Sci. 2023, 270, 118516. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, J.; Shi, W.; Huo, Y.; Ren, Z.; He, D. Resonance and bifurcation of fractional quintic Mathieu–Duffing system. Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 023131. [Google Scholar] [CrossRef]
- Bai, C. Exact solutions for nonlinear partial differential equation: A new approach. Phys. Lett. 2001, 288, 191–195. [Google Scholar] [CrossRef]
- Yavuz, M.; Sulaiman, T.A.; Yusuf, A.; Abdeljawad, T. The Schrödinger-KdV equation of fractional order with Mittag-Leffler nonsingular kernel. Alex. Eng. J. 2021, 60, 2715–2724. [Google Scholar] [CrossRef]
- Hosseini, K.; Akbulut, A.; Baleanu, D.; Salahshour, S. The Sharma–Tasso–Olver–Burgers equation: Its conservation laws and kink solitons. Commun. Theor. Phys. 2022, 74, 025001. [Google Scholar] [CrossRef]
- Ali, K.K.; Abd Elbary, F.; Abdel-wahed, M.S.; Elsisy, M.; Semary, M.S. Solitary Wave Solution for Fractional-Order General Equal-Width Equation via Semi Analytical Technique. Appl. Math. 2023, 17, 483–493. [Google Scholar]
- Khalid, M.Z.; Zubair, M.; Ali, M. An analytical method for the solution of two phase Stefan problem in cylindrical geometry. Appl. Math. Comput. 2019, 342, 295–308. [Google Scholar] [CrossRef]
- Momani, S.; Odibat, Z. Analytical approach to linear fractional partial differential equations arising in fluid mechanics. Phys. Lett. 2006, 355, 271–279. [Google Scholar] [CrossRef]
- Cakmak, M.; Alkan, S. A numerical method for solving a class of systems of nonlinear Pantograph differential equations. Alex. Eng. J. 2022, 61, 2651–2661. [Google Scholar] [CrossRef]
- Nuruddeen, R.; Nass, A.M. Exact solitary wave solution for the fractional and classical GEW-Burgers equations: An application of Kudryashov method. J. Taibah Univ. Sci. 2018, 12, 309–314. [Google Scholar] [CrossRef]
- Iqbal, N.; Botmart, T.; Mohammed, W.W.; Ali, A. Numerical investigation of fractional-order Kersten–Krasil’shchik coupled KdV–mKdV system with Atangana–Baleanu derivative. Adv. Contin. Discret. Model. 2022, 2022, 1–20. [Google Scholar] [CrossRef]
- Mansal, F.; Sene, N. Analysis of fractional fishery model with reserve area in the context of time-fractional order derivative. Chaos Solitons Fractals 2020, 140, 110200. [Google Scholar] [CrossRef]
- Fang, J.; Nadeem, M.; Habib, M.; Karim, S.; Wahash, H.A. A New Iterative Method for the Approximate Solution of Klein-Gordon and Sine-Gordon Equations. J. Funct. Spaces 2022, 2022. [Google Scholar] [CrossRef]
- Shah, K.; Seadawy, A.R.; Arfan, M. Evaluation of one dimensional fuzzy fractional partial differential equations. Alex. Eng. J. 2020, 59, 3347–3353. [Google Scholar] [CrossRef]
- Nadeem, M.; Li, Z. A new strategy for the approximate solution of fourth-order parabolic partial differential equations with fractional derivative. Int. J. Numer. Methods Heat Fluid Flow 2022, 33, 1062–1075. [Google Scholar] [CrossRef]
- Merdan, M. On the solutions of nonlinear fractional Klein–Gordon equation with modified Riemann–Liouville derivative. Appl. Math. Comput. 2014, 242, 877–888. [Google Scholar] [CrossRef]
- Arasteh, H.; Mashayekhi, R.; Toghraie, D.; Karimipour, A.; Bahiraei, M.; Rahbari, A. Optimal arrangements of a heat sink partially filled with multilayered porous media employing hybrid nanofluid. J. Therm. Anal. Calorim. 2019, 137, 1045–1058. [Google Scholar] [CrossRef]
- Barnoon, P.; Toghraie, D.; Dehkordi, R.B.; Afrand, M. Two phase natural convection and thermal radiation of Non-Newtonian nanofluid in a porous cavity considering inclined cavity and size of inside cylinders. Int. Commun. Heat Mass Transf. 2019, 108, 104285. [Google Scholar] [CrossRef]
- Zhao, Y.; Fan, D.; Cao, S.; Lu, W.; Yang, F. Visualization of biochar colloids transport and retention in two-dimensional porous media. J. Hydrol. 2023, 619, 129266. [Google Scholar] [CrossRef]
- Abderrahmane, A.; Jamshed, W.; Abed, A.M.; Smaisim, G.F.; Guedri, K.; Akbari, O.A.; Younis, O.; Baghaei, S. Heat and mass transfer analysis of non-Newtonian power-law nanofluid confined within annulus enclosure using Darcy-Brinkman-Forchheimer model. Case Stud. Therm. Eng. 2022, 40, 102569. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Shafee, A.; Zareei, A.; Haq, R.u.; Li, Z. Heat transfer of magnetic nanoparticles through porous media including exergy analysis. J. Mol. Liq. 2019, 279, 719–732. [Google Scholar] [CrossRef]
- Seth, G.S.; Bhattacharyya, A.; Kumar, R.; Mishra, M.K. Modeling and numerical simulation of hydromagnetic natural convection Casson fluid flow with nth-order chemical reaction and Newtonian heating in porous medium. J. Porous Media 2019, 22, 1141–1157. [Google Scholar] [CrossRef]
- Aggarwal, S.; Sharma, S.D. Solution of Abel’s integral equation by Aboodh transform method. J. Emerg. Technol. Innov. Res. 2019, 6, 317–325. [Google Scholar]
- Aggarwal, S.; Chauhan, R. A comparative study of Mohand and Aboodh transforms. Int. J. Res. Advent Technol. 2019, 7, 520–529. [Google Scholar] [CrossRef]
- Ganji, D.; Sadighi, A. Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations. J. Comput. Appl. Math. 2007, 207, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.M. Modified homotopy perturbation method coupled with Laplace transform for fractional heat transfer and porous media equations. Therm. Sci. 2013, 17, 1409–1414. [Google Scholar] [CrossRef] [Green Version]
x | t | ||||
---|---|---|---|---|---|
0.1 | 1 | 1.20326 | 1.22838 | 1.18807 | 1.1 |
0.2 | 1.30326 | 1.32838 | 1.28807 | 1.2 | |
0.3 | 1.40326 | 1.42838 | 1.38807 | 1.3 | |
0.4 | 1.50326 | 1.52838 | 1.48807 | 1.4 | |
0.5 | 1.60326 | 1.62838 | 1.58807 | 1.5 | |
0.1 | 3 | 1.55198 | 2.05441 | 2.58025 | 3.1 |
0.2 | 1.65198 | 2.15441 | 2.68025 | 3.2 | |
0.3 | 1.75198 | 2.25441 | 2.78025 | 3.3 | |
0.4 | 1.85198 | 2.35441 | 2.88025 | 3.4 | |
0.5 | 1.95198 | 2.45441 | 2.98025 | 3.5 | |
0.1 | 5 | 1.74976 | 2.62313 | 3.73817 | 5.1 |
0.2 | 1.84976 | 2.72313 | 3.83817 | 5.2 | |
0.3 | 1.94976 | 2.82313 | 3.93817 | 5.3 | |
0.4 | 2.04976 | 2.92313 | 4.03817 | 5.4 | |
0.5 | 2.14976 | 3.02313 | 4.13817 | 5.5 |
x | t | ||||
---|---|---|---|---|---|
0.1 | 0.001 | −4.07945 | 0.911369 | 1.04676 | 1.07527 |
0.2 | −2.75201 | 0.968709 | 1.09681 | 1.12321 | |
0.3 | −1.69189 | 1.00347 | 1.12166 | 1.14585 | |
0.4 | −0.908809 | 1.02026 | 1.12748 | 1.14943 | |
0.5 | −0.358122 | 1.02333 | 1.1195 | 1.13895 | |
0.1 | 0.003 | −10.8119 | 0.782813 | 1.00654 | 1.06383 |
0.2 | −7.71798 | 0.855137 | 1.05874 | 1.11288 | |
0.3 | −5.22826 | 0.904019 | 1.08662 | 1.13636 | |
0.4 | −3.37602 | 0.933293 | 1.09884 | 1.14068 | |
0.5 | −2.06287 | 0.922491 | 1.0913 | 1.13122 | |
0.1 | 0.005 | −16.552 | 0.658231 | 0.975656 | 1.05263 |
0.2 | −11.9565 | 0.753374 | 1.02932 | 1.10236 | |
0.3 | −8.24851 | 0.821376 | 1.05939 | 1.12676 | |
0.4 | −5.48297 | 0.865682 | 1.0711 | 1.13208 | |
0.5 | −3.51699 | 0.891058 | 1.06912 | 1.1236 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadeem, M.; Islam, A.; Karim, S.; Mureşan, S.; Iambor, L.F. Numerical Analysis of Time-Fractional Porous Media and Heat Transfer Equations Using a Semi-Analytical Approach. Symmetry 2023, 15, 1374. https://doi.org/10.3390/sym15071374
Nadeem M, Islam A, Karim S, Mureşan S, Iambor LF. Numerical Analysis of Time-Fractional Porous Media and Heat Transfer Equations Using a Semi-Analytical Approach. Symmetry. 2023; 15(7):1374. https://doi.org/10.3390/sym15071374
Chicago/Turabian StyleNadeem, Muhammad, Asad Islam, Shazia Karim, Sorin Mureşan, and Loredana Florentina Iambor. 2023. "Numerical Analysis of Time-Fractional Porous Media and Heat Transfer Equations Using a Semi-Analytical Approach" Symmetry 15, no. 7: 1374. https://doi.org/10.3390/sym15071374
APA StyleNadeem, M., Islam, A., Karim, S., Mureşan, S., & Iambor, L. F. (2023). Numerical Analysis of Time-Fractional Porous Media and Heat Transfer Equations Using a Semi-Analytical Approach. Symmetry, 15(7), 1374. https://doi.org/10.3390/sym15071374