Chandrasekhar Mass Limit of White Dwarfs in Modified Gravity
<p>Profile of scalar field (solid lines) as function of dimensionless variable x in comparison with approximation (<xref ref-type="disp-formula" rid="FD25-symmetry-15-01141">25</xref>) (black dotted line) for some central densities. Parameter <inline-formula><mml:math id="mm332"><mml:semantics><mml:mrow><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mn>14</mml:mn></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula> cm<inline-formula><mml:math id="mm333"><mml:semantics><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:semantics></mml:math></inline-formula>; <inline-formula><mml:math id="mm334"><mml:semantics><mml:msub><mml:mi>ϕ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:semantics></mml:math></inline-formula> means <inline-formula><mml:math id="mm335"><mml:semantics><mml:mrow><mml:mi>ϕ</mml:mi><mml:mo>(</mml:mo><mml:mn>0</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>. For the exact solution, the scalar field starts from smaller values (<inline-formula><mml:math id="mm336"><mml:semantics><mml:mrow><mml:mi>ϕ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>0</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mo>/</mml:mo><mml:msub><mml:mi>ϕ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:mo><</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>).</p> "> Figure 2
<p>Mass–density relation in <inline-formula><mml:math id="mm337"><mml:semantics><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:semantics></mml:math></inline-formula> gravity for some <inline-formula><mml:math id="mm338"><mml:semantics><mml:mi>α</mml:mi></mml:semantics></mml:math></inline-formula> in comparison with GR. The dotted lines correspond to results obtained with simple approximations of the scalar field; <inline-formula><mml:math id="mm339"><mml:semantics><mml:msub><mml:mi>α</mml:mi><mml:mn>13</mml:mn></mml:msub></mml:semantics></mml:math></inline-formula> means that the value of <inline-formula><mml:math id="mm340"><mml:semantics><mml:mi>α</mml:mi></mml:semantics></mml:math></inline-formula> is given in units of <inline-formula><mml:math id="mm341"><mml:semantics><mml:msup><mml:mn>10</mml:mn><mml:mn>13</mml:mn></mml:msup></mml:semantics></mml:math></inline-formula> cm<inline-formula><mml:math id="mm342"><mml:semantics><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:semantics></mml:math></inline-formula>.</p> "> Figure 3
<p>Profile of the scalar field (solid lines) as a function of radial coordinates in comparison with the approximation (<xref ref-type="disp-formula" rid="FD25-symmetry-15-01141">25</xref>) (dotted lines) for <inline-formula><mml:math id="mm343"><mml:semantics><mml:mrow><mml:msub><mml:mi>ρ</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mn>9</mml:mn></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula> g/cm<inline-formula><mml:math id="mm344"><mml:semantics><mml:msup><mml:mrow/><mml:mn>3</mml:mn></mml:msup></mml:semantics></mml:math></inline-formula> and Chandrasekhar EoS.</p> "> Figure 4
<p>Mass–density relation for polytrope with <inline-formula><mml:math id="mm345"><mml:semantics><mml:mrow><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> in <inline-formula><mml:math id="mm346"><mml:semantics><mml:mrow><mml:mi>R</mml:mi><mml:mo>+</mml:mo><mml:msup><mml:mi>α</mml:mi><mml:mrow><mml:mi>l</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:msup><mml:mi>R</mml:mi><mml:mi>l</mml:mi></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula> gravity for (<inline-formula><mml:math id="mm347"><mml:semantics><mml:mrow><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mn>14</mml:mn></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula> cm<inline-formula><mml:math id="mm348"><mml:semantics><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm349"><mml:semantics><mml:mrow><mml:mi>l</mml:mi><mml:mo>=</mml:mo><mml:mn>2.1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, green lines) and (<inline-formula><mml:math id="mm350"><mml:semantics><mml:mrow><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:mn>5</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mn>14</mml:mn></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula> cm<inline-formula><mml:math id="mm351"><mml:semantics><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm352"><mml:semantics><mml:mrow><mml:mi>l</mml:mi><mml:mo>=</mml:mo><mml:mn>2.4</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, black lines). The dotted lines correspond to results obtained with simple approximation of the scalar field.</p> ">
Abstract
:1. Introduction
2. Tolman–Oppenheimer–Volkoff Equations in GR
3. Spherically Symmetric Stars in f(R)-Gravity
4. Simple Model of R2-Gravity: Perturbative Approach and Numerical Integration of Reduced System
5. Realistic Equation of State
6. Chandrasekhar Limit of Mass in Another Model of Modified Gravity
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Capozziello, S.; Laurentis, M.D. Extended Theories of Gravity. Phys. Rept. 2011, 509, 167. [Google Scholar] [CrossRef]
- Capozziello, S.; Faraoni, V. Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics; Springer: Dordrecht, The Netherlands, 2011; Volume 170. [Google Scholar]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59. [Google Scholar] [CrossRef]
- Cruz-Dombriz, A.d.; Saez-Gomez, D. Black holes, cosmological solutions, future singularities, and their thermodynamical properties in modified gravity theories. Entropy 2012, 14, 1717. [Google Scholar] [CrossRef]
- Olmo, G.J. Palatini Approach to Modified Gravity: F(R) Theories and Beyond. Int. J. Mod. Phys. D 2011, 20, 413. [Google Scholar] [CrossRef]
- Dimopoulos, K. Introduction to Cosmic Inflation and Dark Energy; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of ω and ∧ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, P.R.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Riess, A.G.; Strolger, L.; Tonry, J.; Casertano, S.; Ferguson, H.C.; Mobasher, B.; Challis, P.; Filippenko, A.V.; Jha, S.; Li, W.; et al. Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution. Astrophys. J. 2004, 607, 665. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration. Phys. Rev. D 2003, 68, 123512. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1. [Google Scholar] [CrossRef]
- Spergel, D.N.; Verde, L.; Peiris, H.V.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; et al. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. Astrophys. J. Suppl. 2003, 148, 175. [Google Scholar] [CrossRef]
- Schimdt, C.; Tereno, I.; Uzan, J.-P.; Mellier, Y.; van Waerbeke, L.; Semboloni, E.; Hoekstra, H.; Fu, L.; Riazuelo, A. Tracking quintessence by cosmic shear. Astron. Astrophys. 2007, 463, 405–421. [Google Scholar] [CrossRef]
- McDonald, P.; Seljak, U.; Burles, S.; Schlegel, D.J.; Weinberg, D.H.; Cen, R.; Shih, D.; Schaye, J.; Schneider, D.P.; Bahcall, N.A.; et al. The Lyα Forest Power Spectrum from the Sloan Digital Sky Survey. Astrophys. J. Suppl. 2006, 163, 80. [Google Scholar] [CrossRef]
- Sarmah, L.; Kalita, S.; Wojnar, A. Stability criterion for white dwarfs in Palatini f(R) gravity. Phys. Rev. D 2022, 105, 024028. [Google Scholar] [CrossRef]
- Wojnar, A. White dwarf stars in modified gravity. Int. J. Geom. Meth. Mod. Phys. 2021, 18, 2140006. [Google Scholar] [CrossRef]
- Upadhye, A.; Hu, W. Existence of relativistic stars in f(R) gravity. Phys. Rev. D 2009, 80, 064002. [Google Scholar] [CrossRef]
- Babichev, E.; Langlois, D. Relativistic stars in f(R) gravity. Phys. Rev. D 2009, 80, 121501. [Google Scholar] [CrossRef]
- Arapoglu, A.S.; Deliduman, C.; Eksi, K.Y. Constraints on Perturbative f(R) Gravity via Neutron Stars. J. Cosmol. Astropart. Phys. 2011, 7, 20. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Capozziello, S.; Odintsov, S.D. Extreme neutron stars from Extended Theories of Gravity. J. Cosmol. Astropart. Phys. 2015, 1, 1. [Google Scholar] [CrossRef]
- Capozziello, S.; Laurentis, M.D.; Farinelli, R.; Odintsov, S.D. Mass-radius relation for neutron stars in f(R) gravity. Phys. Rev. D 2016, 93, 023501. [Google Scholar] [CrossRef]
- Resco, M.A.; Cruz-Dombriz, A.D.; Llanes-Estrada, F.J.; Castrillo, V.Z. On neutron stars in f(R) theories: Small radii, large masses and large energy emitted in a merger. Phys. Dark Univ. 2016, 13, 147–161. [Google Scholar] [CrossRef]
- Zubair, M.; Abbas, G. Some interior models of compact stars in f(R) gravity. Astrophys. Space Sci. 2016, 361, 342. [Google Scholar] [CrossRef]
- Das, A.; Rahaman, F.; Guha, B.K.; Ray, S. Compact stars in f(R,τ) gravity. Eur. Phys. J. C 2016, 76, 654. [Google Scholar] [CrossRef]
- Yazadjiev, S.S.; Doneva, D.D.; Kokkotas, K.D. Tidal Love numbers of neutron stars in f(R) gravity. Eur. Phys. J. C 2018, 78, 818. [Google Scholar] [CrossRef] [PubMed]
- Kase, R.; Tsujikawa, S. Neutron stars in f(R) gravity and scalar-tensor theories. J. Cosmol. Astropart. Phys. 2019, 1909, 54. [Google Scholar] [CrossRef]
- Blazquez-Salcedo, J.L.; Khoo, F.S.; Kunz, J. Ultra-long-lived quasi-normal modes of neutron stars in massive scalar-tensor gravity. Europhys. Lett.-EPL 2020, 130, 50002. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Capozziello, S.; Odintsov, S.D.; Oikonomou, V.K. Extended Gravity Description for the GW190814 Supermassive Neutron Star. Phys. Lett. B 2020, 811, 135910. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Odintsov, S.D. Supermassive Neutron Stars in Axion F(R) Gravity. Mon. Not. R. Astron. Soc. 2020, 493, 78–86. [Google Scholar] [CrossRef]
- Lobato, R.; Lourenço, O.; Moraes, P.H.R.S.; Lenzi, C.H.; de Avellar, M.; de Paula, W.; Dutra, M.; Malheiro, M. Neutron stars in f(R,T)) gravity using realistic equations of state in the light of massive pulsars and GW170817. J. Cosmol. Astropart. Phys. 2020, 12, 039. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Capozziello, S.; Odintsov, S.D.; Oikonomou, V.K. Causal Limit of Neutron Star Maximal Mass in f(R) Gravity in View of GW190814. Phys. Lett. B 2021, 816, 136222. [Google Scholar] [CrossRef]
- Panotopoulos, G.; Tangphati, T.; Banerjee, A.; Jasim, M.K. Anisotropic quark stars in R2 gravity. Phys. Lett. B 2021, 817, 136330. [Google Scholar] [CrossRef]
- Oikonomou, V.K. Universal inflationary attractors implications on static neutron stars. Class. Quant. Grav. 2021, 38, 175005. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Neutron stars phenomenology with scalar–tensor inflationary attractors. Phys. Dark Univ. 2021, 32, 100805. [Google Scholar] [CrossRef]
- Niu, R.; Zhang, X.; Wang, B.; Zhao, W. Constraining Scalar-tensor Theories Using Neutron Star—Black Hole Gravitational Wave Events. Astrophys. J. 2021, 921, 149. [Google Scholar] [CrossRef]
- Numajiri, K.; Katsuragawa, T.; Nojiri, S. Compact star in general F(R) gravity: Inevitable degeneracy problem and non-integer power correction. Phys. Lett. B 2022, 826, 136929. [Google Scholar] [CrossRef]
- Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A. Stellar structure models in modified theories of gravity: Lessons and challenges. Phys. Rep. 2020, 876, 1–75. [Google Scholar] [CrossRef]
- Pani, P.; Berti, E. Slowly rotating neutron stars in scalar-tensor theories. Phys. Rev. D 2014, 90, 024025. [Google Scholar] [CrossRef]
- Doneva, D.D.; Yazadjiev, S.S.; Stergioulas, N.; Kokkotas, K.D. Rapidly rotating neutron stars in scalar-tensor theories of gravity. Phys. Rev. D 2013, 88, 084060. [Google Scholar] [CrossRef]
- Horbatsch, M.; Silva, H.O.; Gerosa, D.; Pani, P.; Berti, E.; Gualtieri, L.; Sperhake, U. Tensor-multi-scalar theories: Relativistic stars and 3 + 1 decomposition. Class. Quant. Grav. 2015, 32, 204001. [Google Scholar] [CrossRef]
- Silva, H.O.; Macedo, C.F.B.; Berti, E.; Crispino, L.C.B. Slowly rotating anisotropic neutron stars in general relativity and scalar–tensor theory. Class. Quant. Grav. 2015, 32, 145008. [Google Scholar] [CrossRef]
- Chew, X.Y.; Kleihaus, B.; Kunz, J.; Dzhunushaliev, V.; Folomeev, V. Rotating wormhole solutions with a complex phantom scalar field. Phys. Rev. D 2019, 100, 044019. [Google Scholar] [CrossRef]
- Motahar, Z.A.; Blázquez-Salcedo, J.L.; Kleihaus, B.; Kunz, J. Scalarization of neutron stars with realistic equations of state. Phys. Rev. D 2017, 96, 064046. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Odintsov, S.D.; Oikonomou, V. Maximal Masses of White Dwarfs for Polytropes in R2 Gravity and Theoretical Constraints. Phys. Rev. D 2022, 106, 124010. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Capozziello, S.; Odintsov, S.D. Nonperturbative models of quark stars in f(R) gravity. Phys. Lett. B 2015, 742, 160. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Odintsov, S.D.; Cruz-Dombriz, A.D. The realistic models of relativistic stars in f(R) = R + alpha R2 gravity. Class. Quant. Grav. 2017, 34, 205008. [Google Scholar] [CrossRef]
- Arnowitt, R.; Deser, S.; Misner, C. Dynamical Structure and Definition of Energy in General Relativity. Phys. Rev. 1959, 116, 1322. [Google Scholar] [CrossRef]
- Naf, J.; Jetzer, P. On the 1/c expansion of f(R) gravity. Phys. Rev. D 2010, 81, 104003. [Google Scholar] [CrossRef]
- Kilic, M.; Bergeron, P.; Blouin, S.; Bedard, A. The most massive white dwarfs in the solar neighbourhood. Mon. Not. R. Astron. Soc. 2021, 503, 5397–5408. [Google Scholar] [CrossRef]
7 | 1.97 | ∼1 | 1.448 | 1.448 |
7.5 | 4.25 | ∼1 | 1.439 | 1.439 |
8 | 9.15 | 0.92203 | 1.419 | 1.418 |
8.5 | 19.71 | 0.76707 | 1.389 | 1.377 |
9 | 42.48 | 0.62547 | 1.334 | 1.295 |
9.5 | 91.52 | 0.46316 | 1.260 | 1.162 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astashenok, A.V.; Odintsov, S.D.; Oikonomou, V.K. Chandrasekhar Mass Limit of White Dwarfs in Modified Gravity. Symmetry 2023, 15, 1141. https://doi.org/10.3390/sym15061141
Astashenok AV, Odintsov SD, Oikonomou VK. Chandrasekhar Mass Limit of White Dwarfs in Modified Gravity. Symmetry. 2023; 15(6):1141. https://doi.org/10.3390/sym15061141
Chicago/Turabian StyleAstashenok, Artyom V., Sergey D. Odintsov, and Vasilis K. Oikonomou. 2023. "Chandrasekhar Mass Limit of White Dwarfs in Modified Gravity" Symmetry 15, no. 6: 1141. https://doi.org/10.3390/sym15061141
APA StyleAstashenok, A. V., Odintsov, S. D., & Oikonomou, V. K. (2023). Chandrasekhar Mass Limit of White Dwarfs in Modified Gravity. Symmetry, 15(6), 1141. https://doi.org/10.3390/sym15061141