Spacelike Lines with Special Trajectories and Invariant Axodes
<p>The dual hyperbolic and dual Lorentzian unit spheres.</p> "> Figure 2
<p><math display="inline"><semantics> <mover accent="true"> <mi mathvariant="bold">x</mi> <mo>^</mo> </mover> </semantics></math> and its Disteli-axis <math display="inline"><semantics> <mover accent="true"> <mi mathvariant="bold">b</mi> <mo>^</mo> </mover> </semantics></math>.</p> "> Figure 3
<p>Timelike Archimedes.</p> "> Figure 4
<p>Lorentzian unit sphere.</p> "> Figure 5
<p>Timelike helicoid.</p> "> Figure 6
<p>Timelike cone.</p> "> Figure 7
<p>A timelike helicoid of 1st kind.</p> "> Figure 8
<p>Inflection spacelike spherical curve (for <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>3</mn> <mo>≤</mo> <mi>ϑ</mi> <mo>≤</mo> <mn>3</mn> </mrow> </semantics></math>).</p> "> Figure 9
<p>Timelike inflection ruled surface (for <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>3</mn> <mo>≤</mo> <mi>ϑ</mi> <mo>≤</mo> <mn>3</mn> </mrow> </semantics></math>).</p> "> Figure 10
<p>Inflection spacelike spherical curve (for <math display="inline"><semantics> <mrow> <mi>ϑ</mi> <mo>=</mo> <msup> <mi>ϑ</mi> <mo>*</mo> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>1.7</mn> <mo>≤</mo> <mi>ϑ</mi> <mo>≤</mo> <mn>1.7</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>1.5</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>1.5</mn> </mrow> </semantics></math>).</p> "> Figure 11
<p>Timelike inflection ruled surface (for <math display="inline"><semantics> <mrow> <mi>ϑ</mi> <mo>=</mo> <msup> <mi>ϑ</mi> <mo>*</mo> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ω</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>1.7</mn> <mo>≤</mo> <mi>ϑ</mi> <mo>≤</mo> <mn>1.7</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>1.5</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>1.5</mn> </mrow> </semantics></math>).</p> ">
Abstract
:1. Introduction
2. Preliminaries
- (a)
- If and are two dual spacelike vectors, then
- •
- There exists a single dual number ; , and such that ; if and span a dual spacelike plane. This number corresponds to the dual angle between and .
- •
- There exists a single dual number such that , where or via or , respectively, if and span a dual timelike plane. This number corresponds to the central dual angle between and .
- (b)
- If and are two dual timelike vectors, then there exists a single dual number such that , where or via and have the same time-direction or different time-direction, respectively. This dual number is named the Lorentzian timelike dual angle between and .
- (c)
- If is dual spacelike, and is dual timelike, then there exists a single dual number 0 such that , where or via or . This number is called the Lorentzian timelike dual angle between and .
One-Parameter Lorentzian Dual Spherical Movements
3. Spacelike Lines with Special Trajectories
3.1. Plucker Coordinates of a Lorentzian Line Congruence
- (1)
- Timelike Archimedes with its striction curve is a timelike circular helix; for , , , , and (Figure 3).
- (2)
- Lorentzian unit sphere with its striction curve is a spacelike circle; for , , , and (Figure 4).
- (3)
- Timelike helicoid with its striction curve is a timelike line; for , , , , and (Figure 5).
- (4)
- Timelike cone with its striction curve is a fixed point; for , , , and (Figure 6).
3.2. Lorentzian Inflection Line Congruence
Analysis of the Lorentzian Inflection Line Congruence
3.3. Euler–Savary Equation and Disteli Formulae
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bottema, O.; Roth, B. Theoretical Kinematics; North-Holland Press: New York, NY, USA, 1979. [Google Scholar]
- Karger, A.; Novak, J. Space Kinematics and Lie Groups; Gordon and Breach Science Publishers: New York, NY, USA, 1985. [Google Scholar]
- Schaaf, A.; Ravani, B. Geometric continuity of ruled surfaces. Comput. Aided Geom. Des. 1998, 15, 289–310. [Google Scholar] [CrossRef]
- Pottman, H.; Wallner, J. Computational Line Geometry; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Abdel-Baky, R.A.; Al-Solamy, F.R. A new geometrical approach to one-parameter spatial motion. J. Eng. Math. 2008, 60, 149–172. [Google Scholar] [CrossRef]
- Abdel-Baky, R.A.; Al-Ghefari, R.A. On the one-parameter dual spherical motions. Comp. Aided Geom. Des. 2011, 28, 23–37. [Google Scholar] [CrossRef]
- Özcan, B.; Senyurt, S. On some characterizations of ruled surface of a closed timelike curve in dual Lorentzian space. Adv. Appl. Clifford Algebr. 2012, 22, 939–953. [Google Scholar]
- Al-Ghefari, R.A.; Abdel-Baky, R.A. Kinematic geometry of a line trajectory in spatial motion. J. Mech. Sci. Technol. 2015, 29, 3597–3608. [Google Scholar] [CrossRef]
- Abdel-Baky, R.A. On the curvature theory of a line trajectory in spatial kinematics. Commun. Korean Math. Soc. 2019, 34, 333–349. [Google Scholar]
- Aslan, M.C.; Sekerci, G.A. Dual curves associated with the Bonnet ruled surfaces. Int. J. Geom. Methods Mod. Phys. 2020, 17, 2050204. [Google Scholar] [CrossRef]
- Alluhaibi, N. Ruled surfaces with constant Disteli-axis. AIMS Math. 2020, 5, 7678–7694. [Google Scholar] [CrossRef]
- Abdel-Baky, R.A.; Tas, F. W-Line congruences. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020, 69, 450–460. [Google Scholar] [CrossRef]
- Abdel-Baky, R.A.; Naghi, M.F. A study on a line congruence as surface in the space of lines. AIMS Math. 2021, 6, 11109–11123. [Google Scholar] [CrossRef]
- Gungor, M.A.; Ersoy, S.; Tosun, S. Dual Lorentzian spherical movements and dual Euler–Savary formula. Eur. J. Mech. A/Solids 2009, 28, 820–826. [Google Scholar] [CrossRef]
- Alluhaibi, N.; Abdel-Baky, R.A. On the one-parameter Lorentzian spatial movements. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1950197. [Google Scholar] [CrossRef]
- Alluhaibi, N.A.; Abdel-Baky, R.A. On the kinematic-geometry of one-parameter Lorentzian spatial movement. Int. J. Adv. Manuf. Technol. 2022, 121, 7721–7731. [Google Scholar] [CrossRef]
- Li, Y.; Alluhaibi, N.; Abdel-Baky, R.A. One-parameter Lorentzian dual spherical movements and invariants of the axodes. Symmetry 2022, 14, 1930. [Google Scholar] [CrossRef]
- Li, Y.; Tuncer, O.O. On (contra)pedals and (anti)orthotomics of frontals in de Sitter 2-space. Math. Meth. Appl. Sci. 2023, 1, 1–15. [Google Scholar] [CrossRef]
- Li, Y.; Erdogdu, M.; Yavuz, A. Differential Geometric Approach of Betchow-Da Rios Soliton Equation. Hacet. J. Math. Stat. 2022, 1, 1–12. [Google Scholar] [CrossRef]
- Li, Y.; Abolarinwa, A.; Alkhaldi, A.; Ali, A. Some Inequalities of Hardy Type Related to Witten-Laplace Operator on Smooth Metric Measure Space. Mathematics 2022, 10, 4580. [Google Scholar] [CrossRef]
- Li, Y.; Aldossary, M.T.; Abdel-Baky, R.A. Spacelike Circular Surfaces in Minkowski 3-Space. Symmetry 2023, 15, 173. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Nazra, S.H.; Abdel-Baky, R.A. Singularities for Timelike Developable Surfaces in Minkowski 3-Space. Symmetry 2023, 15, 277. [Google Scholar] [CrossRef]
- Li, Y.; Alkhaldi, A.; Ali, A.; Abdel-Baky, R.A.; Saad, M.K. Investigation of ruled surfaces and their singularities according to Balschke frame in Euclidean 3-space. AIMS Math. 2023, 8, 13875–13888. [Google Scholar] [CrossRef]
- Qian, Y.; Yu, D. Rates of approximation by neural network interpolation operators. Appl. Math. Comput. 2022, 41, 126781. [Google Scholar] [CrossRef]
- Li, Y.; Eren, K.; Ayvaci, K.H.; Ersoy, S. The developable surfaces with pointwisev1-type Gauss map of Frenet type framed base curves in Euclidean 3-space. AIMS Math. 2023, 8, 2226–2239. [Google Scholar] [CrossRef]
- Li, Y.; Abdel-Salam, A.A.; Saad, M.K. Primitivoids of curves in Minkowski plane. AIMS Math. 2023, 8, 2386–2406. [Google Scholar] [CrossRef]
- Wang, G.S.; Guan, L.M. Neural network Interpolation operators of multivariate function. J. Comput. Anal. Math. 2023, 431, 115266. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S.; Wang, Z. Tangent developable and Darboux developables of framed curves. Topol. Appl. 2021, 301, 107526. [Google Scholar] [CrossRef]
- Yang, Z.C.; Li, Y.; Erdogdub, M.; Zhu, Y.S. Evolving evolutoids and pedaloids from viewpoints of envelope and singularity theory in Minkowski plane. J. Geom. Phys. 2022, 104513, 1–23. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z. Lightlike tangent developables in de Sitter 3-space. J. Geom. Phys. 2021, 164, 1–11. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Zhao, T. Geometric Algebra of Singular Ruled Surfaces. Adv. Appl. Clifford Algebr. 2021, 31, 1–19. [Google Scholar] [CrossRef]
- Li, Y.; Abolarinwa, A.; Azami, S.; Ali, A. Yamabe constant evolution and monotonicity along the conformal Ricci flow. AIMS Math. 2022, 7, 12077–12090. [Google Scholar] [CrossRef]
- Li, Y.; Ganguly, D. Kenmotsu Metric as Conformalη-Ricci Soliton. Mediterr. J. Math. 2023, 20, 193. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Pang, B.; Zhao, X. An accurate prediction method of cutting forces in 5-axis flank milling of sculptured surface. Int.J. Mach. Tools Manuf. 2016, 104, 26–36. [Google Scholar] [CrossRef]
- Calleja, A.; Bo, P.; Gonzalez, H.; Barton, M.; Norberto, L.; de Lacalle, L. Highly accurate 5-axis flank CNC machining with conical tools. Int. J. Adv. Manuf. Technol. 2018, 97, 1605–1615. [Google Scholar] [CrossRef]
- Walfare, J. Curves and Surfaces in Minkowski Space. Ph.D. Thesis, K.U. Leuven, Faculty of Science, Leuven, Belgium, 1995. [Google Scholar]
- López, R. Differential geometry of curves and surfaces in Lorentz-Minkowski space. Int. Electron. J. Geom. 2014, 7, 44–107. [Google Scholar] [CrossRef]
- O’Neil, B. Semi-Riemannian Geometry Geometry, with Applications to Relativity; Academic Press: New York, NY, USA, 1983. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almoneef, A.A.; Abdel-Baky, R.A. Spacelike Lines with Special Trajectories and Invariant Axodes. Symmetry 2023, 15, 1087. https://doi.org/10.3390/sym15051087
Almoneef AA, Abdel-Baky RA. Spacelike Lines with Special Trajectories and Invariant Axodes. Symmetry. 2023; 15(5):1087. https://doi.org/10.3390/sym15051087
Chicago/Turabian StyleAlmoneef, Areej A., and Rashad A. Abdel-Baky. 2023. "Spacelike Lines with Special Trajectories and Invariant Axodes" Symmetry 15, no. 5: 1087. https://doi.org/10.3390/sym15051087
APA StyleAlmoneef, A. A., & Abdel-Baky, R. A. (2023). Spacelike Lines with Special Trajectories and Invariant Axodes. Symmetry, 15(5), 1087. https://doi.org/10.3390/sym15051087