The n-Point Composite Fractional Formula for Approximating Riemann–Liouville Integrator
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Numerical Examples
- Case 1: When , we obtain:
- Case 2: When , we obtain:
- Case 3: When , we obtain:
- Case 1: When , we have:
- Case 2: When , we have:
- Case 3: When , we have:
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aho, A.V.; Hopcroft, J.E.; Ullman, J.D. The Design and Analysis of Computer Algorithms; Addison-Wesley: Reading, MA, USA, 1974. [Google Scholar]
- Batiha, I.M.; Obeidat, A.; Alshorm, S.; Alotaibi, A.; Alsubaie, H.; Momani, S.; Albdareen, M.; Zouidi, F.; Eldin, S.M.; Jahanshahi, H. A Numerical Confirmation of a Fractional-Order COVID-19 Model’s Efficiency. Symmetry 2022, 14, 2583. [Google Scholar] [CrossRef]
- Batiha, I.M.; El-Khazali, R.; Ababneh, O.Y.; Ouannas, A.; Batyha, R.M.; Momani, S. Optimal design of PIρDμ-controller for artificial ventilation systems for COVID-19 patients. Aims Math. 2023, 8, 657–675. [Google Scholar] [CrossRef]
- Williams, W.K.; Vijayakumar, V.; Nisar, K.S.; Shukla, A. Atangana–Baleanu Semilinear Fractional Differential Inclusions with Infinite Delay: Existence and Approximate Controllability. ASME J. Comput. Nonlinear Dynam. 2023, 18, 021005. [Google Scholar] [CrossRef]
- Bose, C.S.V.; Udhayakumar, R. Analysis on the Controllability of Hilfer Fractional Neutral Differential Equations with Almost Sectorial Operators and Infinite Delay via Measure of Noncompactness. Qual. Theory Dyn. Syst. 2023, 22, 22. [Google Scholar] [CrossRef]
- Dineshkumar, C.; Udhayakumar, R.; Vijayakumar, V.; Shukla, A.; Nisar, K.S. Discussion on the Approximate Controllability of Nonlocal Fractional Derivative by Mittag-Leffler Kernel to Stochastic Differential Systems. Qual. Theory Dyn. Syst. 2023, 22, 27. [Google Scholar] [CrossRef]
- Dababneh, A.; Djenina, N.; Ouannas, A.; Grassi, G.; Batiha, I.M.; Jebril, I.H. A New Incommensurate Fractional-Order Discrete COVID-19 Model with Vaccinated Individuals Compartment. Fractal Fract. 2022, 6, 456. [Google Scholar] [CrossRef]
- Ouannas, A.; Batiha, I.M.; Bekiros, S.; Liu, J.; Jahanshahi, H.; Aly, A.A.; Alghtani, A.H. Synchronization of the Glycolysis Reaction-Diffusion Model via Linear Control Law. Entropy 2021, 23, 1516. [Google Scholar] [CrossRef] [PubMed]
- Albadarneh, R.B.; Batiha, I.M.; Adwai, A.; Tahat, N.; Alomari, A.K. Numerical approach of Riemann-Liouville fractional derivative operator. Int. J. Electr. Comput. Eng. 2021, 11, 5367–5378. [Google Scholar] [CrossRef]
- Bezziou, M.; Dahmani, Z.; Jebril, I.; Kaid, M. Caputo-hadamard approach applications: Solvability for an integro-differential problem of lane and emden type. J. Math. Comput. Sci. 2021, 11, 1629–1649. [Google Scholar]
- Albadarneh, R.B.; Batiha, I.; Alomari, A.K.; Tahat, N. Numerical approach for approximating the Caputo fractional-order derivative operator. Aims Math. 2021, 6, 12743–12756. [Google Scholar] [CrossRef]
- Grigoletto, E.C.; de Oliveira, E.C. Fractional Versions of the Fundamental Theorem of Calculus. Appl. Math. 2013, 4, 23–33. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 2008, 323, 2756–2778. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives. Theory and Applications; Gordon and Breach Science Publishers: London, UK, 1993. [Google Scholar]
- Machado, J.T.; Mainardi, F.; Kiryakova, V. Fractional Calculus: Quo Vadimus, 495–526. Fract. Calc. Appl. Anal. 2015, 18. [Google Scholar] [CrossRef]
- Machado, J.T.; Mainardi, F.; Kiryakova, V.; Atanacković, T. Fractional Calculus: D’où venos-nous? Que sommes-Nous Où allons-Nous? Fract. Calc. Appl. Anal. 2016, 19, 1074–1104. [Google Scholar] [CrossRef]
- Ortigueira, M.; Machado, J. Fractional Definite Integral. Fractal Fract. 2017, 1, 2. [Google Scholar] [CrossRef]
- Batiha, I.M.; El-Khazali, R.; AlSaedi, A.; Momani, S. The General Solution of Singular Fractional-Order Linear Time-Invariant Continuous Systems with Regular Pencils. Entropy 2018, 20, 400. [Google Scholar] [CrossRef] [PubMed]
- Odibat, M.Z.; Momani, S. An algorithm for the numerical solution of differential equations of fractional order. J. Appl. Math. Inform. 2008, 26, 15–27. [Google Scholar]
- Batiha; Alshorm, I.M.S.; Ouannas, A.; Momani, S.; Ababneh, O.Y.; Albdareen, M. Modified Three-Point Fractional Formulas with Richardson Extrapolation. Mathematics 2022, 10, 3489. [Google Scholar] [CrossRef]
- Burden, R.L.; Faires, J.D. Numerical Analysis, 9th ed.; Brooks/Cole: Pacific Grove, CA, USA, 2011. [Google Scholar]
0.5 | 0.75 | 1 | |
---|---|---|---|
2 | 22.27105816166 | 26.16734499344 | 23.68537600000 |
4 | 22.69349110102 | 26.26331428545 | 23.69932800000 |
6 | 24.03916177943 | 26.50011822893 | 23.72599466666 |
8 | 27.18307909882 | 26.96769964223 | 23.77049600000 |
10 | 28.49632000000 | 26.79576811488 | 23.84000000000 |
Exact: | 28.69344858658 | 26.46463660779 | 24 |
0.45 | 0.65 | 1 | |
---|---|---|---|
2 | 0.988434759968 | 1.109574041883 | 1.416657631095 |
4 | 1.046664086456 | 1.129294584780 | 1.418163344357 |
6 | 1.098873318034 | 1.271316766203 | 1.420407266983 |
8 | 1.156966874475 | 1.233598909270 | 1.423035132930 |
10 | 1.293240352453 | 1.306986260607 | 1.425632059945 |
Exact: | 1.273563291144 | 1.362300353262 | 1.416146836547 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batiha, I.M.; Alshorm, S.; Al-Husban, A.; Saadeh, R.; Gharib, G.; Momani, S. The n-Point Composite Fractional Formula for Approximating Riemann–Liouville Integrator. Symmetry 2023, 15, 938. https://doi.org/10.3390/sym15040938
Batiha IM, Alshorm S, Al-Husban A, Saadeh R, Gharib G, Momani S. The n-Point Composite Fractional Formula for Approximating Riemann–Liouville Integrator. Symmetry. 2023; 15(4):938. https://doi.org/10.3390/sym15040938
Chicago/Turabian StyleBatiha, Iqbal M., Shameseddin Alshorm, Abdallah Al-Husban, Rania Saadeh, Gharib Gharib, and Shaher Momani. 2023. "The n-Point Composite Fractional Formula for Approximating Riemann–Liouville Integrator" Symmetry 15, no. 4: 938. https://doi.org/10.3390/sym15040938
APA StyleBatiha, I. M., Alshorm, S., Al-Husban, A., Saadeh, R., Gharib, G., & Momani, S. (2023). The n-Point Composite Fractional Formula for Approximating Riemann–Liouville Integrator. Symmetry, 15(4), 938. https://doi.org/10.3390/sym15040938