A Hybrid Cracked Tiers Detection System Based on Adaptive Correlation Features Selection and Deep Belief Neural Networks
<p>Proposed scenario of intelligent system for detection of cracked tires.</p> "> Figure 2
<p>Architecture of deep belief network.</p> "> Figure 3
<p>Graphical representation of restricted Boltzmann machines.</p> "> Figure 4
<p>Architecture of hybrid adaptive–correlation-based feature selection and deep belief neural networks.</p> "> Figure 5
<p>Graphical representation of histogram of oriented gradient features.</p> "> Figure 6
<p>Distribution value of the threshold (α) in the proposed adaptive correlation features selection.</p> "> Figure 7
<p>Flow of the proposed adaptive correlation-based and variance feature selection.</p> "> Figure 8
<p>Sample of images in the tires dataset.</p> "> Figure 9
<p>Comparison between naïve Bayes (NB), random forest (RF), and decision tree (DT), and deep belief neural network (DBN) in terms of true negative rate (TNR).</p> "> Figure 10
<p>Comparison between hybrid adaptive–correlation-based feature selection—deep belief neural network (H-DBN) and deep belief neural network (DBN) in terms of true positives rate (TPR).</p> "> Figure 11
<p>Comparison between hybrid adaptive–correlation-based feature selection—deep belief neural network (H-DBN) and deep belief neural network (DBN) in terms of receiver operating characteristic (ROC).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Deep Belief Networks (DBN)
2.2. Histogram of Oriented Gradients (HOG)
2.3. Correlation-Based Feature Selection (CFS)
2.4. Proposed Hybrid Adaptive–CFS and DBN (H-DBN):
3. Preprocessing
4. Extraction Features
5. Adaptive Correlation-Based and Variance Feature Selection (ACFS)
Algorithm 1: ACFS. |
X← Data //vector of features |
N← max number of gradient searches |
αt←0 |
initialization; |
while i ≤ N do |
//select features according to Eq(14) |
F ← select features(αt, X) // t current iteration |
F1 ← select features((αt + β), X) |
F2 ← select features((αt − β),X) |
// Evaluated features F, F1, and F2 by DBN or any machine learning algorithms |
Acc ← Evaluate features(F) |
Acc1 ← Evaluate features (F1) |
Acc2 ← Evaluate features (F2) |
If Acc < Acc1 then |
i ← 0 |
F ← F1 |
Else if Acc < Acc2 then |
i ← 0 |
F ← F2 |
Else |
i ← i+1 |
Return F // Optimal Features |
6. Experiment Results
6.1. Dataset
6.2. Empirical Results
7. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hadi, S.M.; Alsaeedi, A.H.; Al-Shammary, D.; Alyasseri, Z.A.A.; Mohammed, M.A.; Abdulkareem, K.H.; Nuiaa, R.R.; Jaber, M.M. Trigonometric words ranking model for spam message classification. IET Netw. 2022. [Google Scholar] [CrossRef]
- González-Ortiz, A.M.; Bernal-Silva, S.; Comas-García, A.; Vega-Morúa, M.; Garrocho-Rangel, M.E.; Noyola, D.E. Severe Respiratory Syncytial Virus Infection in Hospitalized Children. Arch. Med. Res. 2019, 50, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.M.; Alsaeedi, A.H.; Al-Shammary, D.; Alsaeedi, H.H.; Abid, H.W. Efficient intelligent system for diagnosis pneumonia (SARS-COVID19) in X-ray images empowered with initial clustering. Indones. J. Electr. Eng. Comput. Sci. 2021, 22, 241–251. [Google Scholar] [CrossRef]
- Nematzadeh, S.; Kiani, F.; Torkamanian-Afshar, M.; Aydin, N. Tuning hyperparameters of machine learning algorithms and deep neural networks using metaheuristics: A bioinformatics study on biomedical and biological cases. Comput. Biol. Chem. 2021, 97, 107619. [Google Scholar] [CrossRef] [PubMed]
- Bassel, A.; Abdulkareem, A.B.; Alyasseri, Z.A.A.; Sani, N.S.; Mohammed, H.J. Automatic Malignant and Benign Skin Cancer Classification Using a Hybrid Deep Learning Approach. Diagnostics 2022, 12, 2472. [Google Scholar] [CrossRef]
- Boutros, F.; Damer, N.; Kirchbuchner, F.; Kuijper, A. ElasticFace: Elastic Margin Loss for Deep Face Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022; pp. 1577–1586. [Google Scholar] [CrossRef]
- Alfoudi, A. University of Al-Qadisiyah Palm Vein Identification Based on Hybrid Feature Selection Model. Int. J. Intell. Eng. Syst. 2021, 14, 469–478. [Google Scholar] [CrossRef]
- Malini, M.S.; Patil, M. Interpolation Techniques in Image Resampling. Int. J. Eng. Technol. 2018, 7, 567–570. [Google Scholar] [CrossRef]
- Munawar, H.S.; Hammad, A.W.A.; Haddad, A.; Soares, C.A.P.; Waller, S.T. Image-Based Crack Detection Methods: A Review. Infrastructures 2021, 6, 115. [Google Scholar] [CrossRef]
- Siegel, J.E.; Sun, Y.; Sarma, S. Automotive Diagnostics as a Service: An Artificially Intelligent Mobile Application for Tire Condition Assessment. In Proceedings of the International Conference on AI and Mobile Services, Seattle, DC, USA, 25–30 June 2018; pp. 172–184. [Google Scholar] [CrossRef]
- Ozturk, M.; Baran, M.; Latifoğlu, F. Beyond the colors: Enhanced deep learning on invasive ductal carcinoma. Neural Comput. Appl. 2022, 34, 18953–18973. [Google Scholar] [CrossRef]
- Bučko, B.; Lieskovská, E.; Zábovská, K.; Zábovský, M. Computer Vision Based Pothole Detection under Challenging Conditions. Sensors 2022, 22, 8878. [Google Scholar] [CrossRef]
- Bhalla, K.; Koundal, D.; Bhatia, S.; Rahmani, M.K.I.; Tahir, M. Fusion of Infrared and Visible Images Using Fuzzy Based Siamese Convolutional Network. Comput. Mater. Contin. 2022, 70, 5503–5518. [Google Scholar] [CrossRef]
- Das, R.; Piciucco, E.; Maiorana, E.; Campisi, P. Convolutional Neural Network for Finger-Vein-Based Biometric Identification. IEEE Trans. Inf. Forensics Secur. 2018, 14, 360–373. [Google Scholar] [CrossRef] [Green Version]
- Ingle, P.Y.; Kim, Y.-G. Real-Time Abnormal Object Detection for Video Surveillance in Smart Cities. Sensors 2022, 22, 3862. [Google Scholar] [CrossRef] [PubMed]
- Mansor, N.; Sani, N.S.; Aliff, M. Machine Learning for Predicting Employee Attrition. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 435–445. [Google Scholar] [CrossRef]
- Nasif, A.; Othman, Z.; Sani, N. The Deep Learning Solutions on Lossless Compression Methods for Alleviating Data Load on IoT Nodes in Smart Cities. Sensors 2021, 21, 4223. [Google Scholar] [CrossRef]
- Jabor, A.H.; Ali, A.H. Dual Heuristic Feature Selection Based on Genetic Algorithm and Binary Particle Swarm Optimization. J. Univ. BABYLON Pure Appl. Sci. 2019, 27, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Suwadi, N.A.; Derbali, M.; Sani, N.S.; Lam, M.C.; Arshad, H.; Khan, I.; Kim, K.-I. An Optimized Approach for Predicting Water Quality Features Based on Machine Learning. Wirel. Commun. Mob. Comput. 2022, 2022, 3397972. [Google Scholar] [CrossRef]
- Park, H.-J.; Lee, Y.-W.; Kim, B.-G. Efficient Tire Wear and Defect Detection Algorithm Based on Deep Learning. J. Korea Multimed. Soc. 2021, 24, 1026–1034. [Google Scholar]
- Wei, T.J.; Bin Abdullah, A.R.; Saad, N.B.M.; Ali, N.B.M.; Tengku Zawawi, T.N.S. Featureless EMG pattern recognition based on convolutional neural network. Indones. J. Electr. Eng. Comput. Sci. 2019, 14, 1291–1297. [Google Scholar] [CrossRef]
- Kumar, R.; Arora, R.; Bansal, V.; Sahayasheela, V.J.; Buckchash, H.; Imran, J.; Narayanan, N.; Pandian, G.N.; Raman, B. Classification of COVID-19 from chest x-ray images using deep features and correlation coefficient. Multimed. Tools Appl. 2022, 81, f27631–f27655. [Google Scholar] [CrossRef]
- Sohn, I. Deep belief network based intrusion detection techniques: A survey. Expert Syst. Appl. 2020, 167, 114170. [Google Scholar] [CrossRef]
- Wang, J.; He, Z.; Huang, S.; Chen, H.; Wang, W.; Pourpanah, F. Fuzzy measure with regularization for gene selection and cancer prediction. Int. J. Mach. Learn. Cybern. 2021, 12, 2389–2405. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, K.; Wu, C.; Niu, X.; Yang, Y. Building an Effective Intrusion Detection System Using the Modified Density Peak Clustering Algorithm and Deep Belief Networks. Appl. Sci. 2019, 9, 238. [Google Scholar] [CrossRef] [Green Version]
- Maldonado-Chan, M.; Mendez-Vazquez, A.; Guardado-Medina, R.O. Multimodal Tucker Decomposition for Gated RBM Inference. Appl. Sci. 2021, 11, 7397. [Google Scholar] [CrossRef]
- Reza, S.; Amin, O.B.; Hashem, M. A Novel Feature Extraction and Selection Technique for Chest X-ray Image View Classification. In Proceedings of the 2019 5th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 26–28 September 2019; pp. 189–194. [Google Scholar] [CrossRef]
- Hussein, I.J.; Burhanuddin, M.A.; Mohammed, M.A.; Benameur, N.; Maashi, M.S.; Maashi, M.S. Fully-automatic identification of gynaecological abnormality using a new adaptive frequency filter and histogram of oriented gradients ( HOG ). Expert Syst. 2021, 39, e12789. [Google Scholar] [CrossRef]
- Al-Shammary, D.; Albukhnefis, A.L.; Alsaeedi, A.H.; Al-Asfoor, M. Extended particle swarm optimization for feature selection of high-dimensional biomedical data. Concurr. Comput. Pract. Exp. 2022, 34, e6776. [Google Scholar] [CrossRef]
- Chakraborty, C.; Kishor, A.; Rodrigues, J.J. Novel Enhanced-Grey Wolf Optimization hybrid machine learning technique for biomedical data computation. Comput. Electr. Eng. 2022, 99, 107778. [Google Scholar] [CrossRef]
- Alkafagi, S.S.; Almuttairi, R.M. A Proactive Model for Optimizing Swarm Search Algorithms for Intrusion Detection System. J. Phys. Conf. Ser. 2021, 1818, 012053. [Google Scholar] [CrossRef]
- Sharda, S.; Srivastava, M.; Gusain, H.S.; Sharma, N.K.; Bhatia, K.S.; Bajaj, M.; Kaur, H.; Zawbaa, H.M.; Kamel, S. A hybrid machine learning technique for feature optimization in object-based classification of debris-covered glaciers. Ain Shams Eng. J. 2022, 13, 101809. [Google Scholar] [CrossRef]
- Safaeian, M.; Fathollahi-Fard, A.M.; Kabirifar, K.; Yazdani, M.; Shapouri, M. Selecting Appropriate Risk Response Strategies Considering Utility Function and Budget Constraints: A Case Study of a Construction Company in Iran. Buildings 2022, 12, 98. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, X.; Zhu, R. Feature selection based on mutual information with correlation coefficient. Appl. Intell. 2021, 52, 5457–5474. [Google Scholar] [CrossRef]
- Aliff, M.; Amry, S.; Yusof, M.I.; Zainal, A.; Rohanim, A.; Sani, N.S. Development of Smart Rescue Robot with Image Processing (iROB-IP). Int. J. Electr. Eng. Technol. 2020, 11, 8–19. [Google Scholar]
Predictor | Feature Selection Model | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|---|
NB | Stand alone | 0.649 | 0.824 | 0.504 | 0.402 |
CFS | 0.662 | 0.621 | 0.553 | 0.528 | |
ACFS | 0.686 | 0.686 | 0.578 | 0.558 | |
RF | Stand alone | 0.786 | 0.704 | 0.734 | 0.715 |
CFS | 0.798 | 0.726 | 0.740 | 0.732 | |
ACFS | 0.809 | 0.740 | 0.747 | 0.743 | |
DT | Stand alone | 0.615 | 0.602 | 0.610 | 0.560 |
CFS | 0.639 | 0.624 | 0.628 | 0.625 | |
ACFS | 0.661 | 0.649 | 0.648 | 0.648 | |
ANN | Stand-alone | 0.671 | 0.726 | 0.541 | 0.483 |
CFS | 0.651 | 0.688 | 0.556 | 0.508 | |
ACFS | 0.682 | 0.769 | 0.593 | 0.547 | |
DBN | Stand alone | 0.816 | 0.798 | 0.832 | 0.805 |
CFS | 0.859 | 0.828 | 0.899 | 0.842 | |
ACFS | 0.890 | 0.872 | 0.883 | 0.877 |
Reference | Algorithm Name | Accuracy |
---|---|---|
[10] | A smartphone-operable densely connected convolutional neural network for tire condition assessment | 78% |
[20] | Efficient tire wear and defect detection algorithm based on deep learning | 85% |
[3] | Efficient intelligent system for diagnosis of pneumonia in X-ray images empowered with an initial clustering | 82% |
Proposed H-DBN | 88% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-juboori, A.M.; Alsaeedi, A.H.; Nuiaa, R.R.; Alyasseri, Z.A.A.; Sani, N.S.; Hadi, S.M.; Mohammed, H.J.; Musawi, B.A.; Amin, M.M. A Hybrid Cracked Tiers Detection System Based on Adaptive Correlation Features Selection and Deep Belief Neural Networks. Symmetry 2023, 15, 358. https://doi.org/10.3390/sym15020358
Al-juboori AM, Alsaeedi AH, Nuiaa RR, Alyasseri ZAA, Sani NS, Hadi SM, Mohammed HJ, Musawi BA, Amin MM. A Hybrid Cracked Tiers Detection System Based on Adaptive Correlation Features Selection and Deep Belief Neural Networks. Symmetry. 2023; 15(2):358. https://doi.org/10.3390/sym15020358
Chicago/Turabian StyleAl-juboori, Ali Mohsin, Ali Hakem Alsaeedi, Riyadh Rahef Nuiaa, Zaid Abdi Alkareem Alyasseri, Nor Samsiah Sani, Suha Mohammed Hadi, Husam Jasim Mohammed, Bashaer Abbuod Musawi, and Maifuza Mohd Amin. 2023. "A Hybrid Cracked Tiers Detection System Based on Adaptive Correlation Features Selection and Deep Belief Neural Networks" Symmetry 15, no. 2: 358. https://doi.org/10.3390/sym15020358
APA StyleAl-juboori, A. M., Alsaeedi, A. H., Nuiaa, R. R., Alyasseri, Z. A. A., Sani, N. S., Hadi, S. M., Mohammed, H. J., Musawi, B. A., & Amin, M. M. (2023). A Hybrid Cracked Tiers Detection System Based on Adaptive Correlation Features Selection and Deep Belief Neural Networks. Symmetry, 15(2), 358. https://doi.org/10.3390/sym15020358