Hidden Homogeneous Extreme Multistability of a Fractional-Order Hyperchaotic Discrete-Time System: Chaos, Initial Offset Boosting, Amplitude Control, Control, and Synchronization
<p>Bifurcation diagrams and LEs of the FODTS (<a href="#FD3-symmetry-15-00139" class="html-disp-formula">3</a>) with no equilibria for fractional order value <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>: (<b>a</b>) for <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>∈</mo> <mo>[</mo> <mn>2.3</mn> <mo>,</mo> <mn>2.9</mn> <mo>]</mo> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, and initial value <math display="inline"><semantics> <mrow> <msub> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>;</mo> <msub> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> </mrow> </semantics></math>; (<b>b</b>) for <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>∈</mo> <mo>[</mo> <mo>−</mo> <mn>2.9</mn> <mo>,</mo> <mo>−</mo> <mn>2.3</mn> <mo>]</mo> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mo>−</mo> <mn>0.1</mn> </mrow> </semantics></math>, and initial value <math display="inline"><semantics> <mrow> <msub> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>;</mo> <msub> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Hidden attractors of the FODTS (<a href="#FD3-symmetry-15-00139" class="html-disp-formula">3</a>) for the symmetrical initial conditions <math display="inline"><semantics> <mrow> <mfenced separators="" open="(" close=")"> <msub> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> <mn>0</mn> </msub> <mo>,</mo> <msub> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> <mn>0</mn> </msub> </mfenced> <mo>=</mo> <mrow> <mo>(</mo> <mo>±</mo> <mn>1</mn> <mo>,</mo> <mo>±</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, fractional order <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>, positive system parameters in red diagrams, and negative system parameters in blue diagrams: (<b>a</b>) hidden periodic attractors for <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mo>±</mo> <mn>2.62</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mo>±</mo> <mn>0.1</mn> </mrow> </semantics></math>; (<b>b</b>) hidden chaotic attractors for <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mo>±</mo> <mn>2.772</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mo>±</mo> <mn>0.1</mn> </mrow> </semantics></math>; (<b>c</b>) hidden hyperchaotic attractors for <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mo>±</mo> <mn>2.85</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mo>±</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Bifurcation diagrams and Lyapunov exponents of the FODTS (<a href="#FD3-symmetry-15-00139" class="html-disp-formula">3</a>) with the lines of the equilibrium points in the <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>−</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </semantics></math> plane for the fractional order value <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>: (<b>a</b>) for <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>∈</mo> <mo>[</mo> <mn>2.3</mn> <mo>,</mo> <mn>2.9</mn> <mo>]</mo> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, and IV <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>10</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>;</mo> <msub> <mi>x</mi> <mn>20</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> </mrow> </semantics></math>; (<b>b</b>) for <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>∈</mo> <mo>[</mo> <mo>−</mo> <mn>2.9</mn> <mo>,</mo> <mo>−</mo> <mn>2.3</mn> <mo>]</mo> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, and initial conditions <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>10</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>;</mo> <msub> <mi>x</mi> <mn>20</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Hidden attractors of the FODTS (<a href="#FD3-symmetry-15-00139" class="html-disp-formula">3</a>) with the lines of the equilibrium points for the symmetrical IV <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>10</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>20</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mo>±</mo> <mn>1</mn> <mo>,</mo> <mo>±</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, fractional order <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>, and positive system parameters in red, and negative system parameters in blue with <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>: (<b>a</b>) hidden periodic attractors for <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mo>±</mo> <mn>2.752</mn> </mrow> </semantics></math>, (<b>b</b>) hidden hyperchaotic attractors for <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mo>±</mo> <mn>2.797</mn> </mrow> </semantics></math>, (<b>c</b>) hidden chaotic attractors for <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mo>±</mo> <mn>2.867</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Hidden attractors, bifurcation diagrams, and Lyapunov exponents (LEs) versus <math display="inline"><semantics> <mi>η</mi> </semantics></math> of the FODTS (<a href="#FD3-symmetry-15-00139" class="html-disp-formula">3</a>) for the symmetrical initial conditions <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msub> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> <mn>0</mn> </msub> <mo>,</mo> <msub> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mo>±</mo> <mn>1</mn> <mo>,</mo> <mo>±</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, and positive control parameter <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>2.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> (red diagram), and negative control parameters <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mo>−</mo> <mn>2.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mo>−</mo> <mn>0.1</mn> </mrow> </semantics></math> (blue diagram).</p> "> Figure 5 Cont.
<p>Hidden attractors, bifurcation diagrams, and Lyapunov exponents (LEs) versus <math display="inline"><semantics> <mi>η</mi> </semantics></math> of the FODTS (<a href="#FD3-symmetry-15-00139" class="html-disp-formula">3</a>) for the symmetrical initial conditions <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msub> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> <mn>0</mn> </msub> <mo>,</mo> <msub> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mo>±</mo> <mn>1</mn> <mo>,</mo> <mo>±</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, and positive control parameter <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>2.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> (red diagram), and negative control parameters <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mo>−</mo> <mn>2.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mo>−</mo> <mn>0.1</mn> </mrow> </semantics></math> (blue diagram).</p> "> Figure 6
<p>Different bifurcation diagrams and Lyapunov exponents of the FODTS (<a href="#FD3-symmetry-15-00139" class="html-disp-formula">3</a>) with the variation of control parameter <span class="html-italic">A</span> and fractional order <math display="inline"><semantics> <mi>η</mi> </semantics></math>.</p> "> Figure 6 Cont.
<p>Different bifurcation diagrams and Lyapunov exponents of the FODTS (<a href="#FD3-symmetry-15-00139" class="html-disp-formula">3</a>) with the variation of control parameter <span class="html-italic">A</span> and fractional order <math display="inline"><semantics> <mi>η</mi> </semantics></math>.</p> "> Figure 7
<p>Bifurcation and LEs of the FODTS (<a href="#FD3-symmetry-15-00139" class="html-disp-formula">3</a>) versus IV <math display="inline"><semantics> <msub> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> <mn>0</mn> </msub> </semantics></math>, for parameter values <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>2.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and fractional order <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>Five coexisting hidden hyperchaotic attractors for different initial conditions and control parameters <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>2.7</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>B</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> and order <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>20</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>Offset boosting of the fractional map (<a href="#FD3-symmetry-15-00139" class="html-disp-formula">3</a>) for varying initial condition <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and fractional order <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math>. Bifurcation diagrams as the control parameter <span class="html-italic">a</span> increases in <math display="inline"><semantics> <mrow> <mo>[</mo> <mn>2.3</mn> <mo>,</mo> <mn>2.9</mn> <mo>]</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>Four hidden chaotic attractors with <math display="inline"><semantics> <mrow> <msub> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>−</mo> <mn>2</mn> <mi>π</mi> </mrow> </semantics></math> (grey), <math display="inline"><semantics> <mrow> <msub> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> </mrow> </semantics></math> (blue), <math display="inline"><semantics> <mrow> <msub> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>+</mo> <mn>2</mn> <mi>π</mi> </mrow> </semantics></math> (red), <math display="inline"><semantics> <mrow> <msub> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>+</mo> <mn>4</mn> <mi>π</mi> </mrow> </semantics></math> (magenta).</p> "> Figure 11
<p>Rescaled phase diagrams under different total amplitude controllers <math display="inline"><semantics> <msub> <mi>c</mi> <mn>1</mn> </msub> </semantics></math> of FODTS with <math display="inline"><semantics> <mrow> <msub> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> </mrow> </semantics></math>, and fractional order <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>: <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>5</mn> </mrow> </semantics></math> (green diagram), <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> (red diagram), <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math> (magenta diagram), <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>13</mn> </mrow> </semantics></math>, (blue diagram).</p> "> Figure 12
<p>The approximate entropy ApEn of the FODTS (<a href="#FD3-symmetry-15-00139" class="html-disp-formula">3</a>) in the three-dimensional space with the variation of system parameter <span class="html-italic">A</span> and fractional order <math display="inline"><semantics> <mi>η</mi> </semantics></math>, for <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 13
<p>Evolution of states and the phase space plot of the controlled FODTS (<a href="#FD3-symmetry-15-00139" class="html-disp-formula">3</a>) with fractional order <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math> and system parameters <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>2.8</mn> <mo>,</mo> <mi>B</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 14
<p>Evolution of synchronization error states with FODTS <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math> and system parameters <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>2.8</mn> <mo>,</mo> <mi>B</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Description and Analysis of the Fractional Hyperchaotic Map
3. Dynamical Analysis and Numerical Simulations
3.1. Hidden Attractors and Bifurcation Analysis
- Case A: No Fixed Point
- Case B: Line of the Equilibrium Point
3.2. The Effect of Fractional Order
3.3. Hidden Extreme Homogeneous Multistability
3.4. Initial Offset Boosting
4. Amplitude Control Analysis
5. Complexity Analysis of the FODTS
- Step 1. Construct a sequence of m vectors. For a given time series , the m vector sequence is constructed as
- Step 2. For each , define the following equation
- Step 3. On the basis of , the average value is denoted to be
- Step 4. The is calculated as follows
6. Control Laws
7. Synchronization
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herrmann, R. Fractional Calculus—An Introduction for Physicists; World Scientific: Singapore, 2018. [Google Scholar]
- Diaz, J.B.; Olser, T.J. Differences of fractional order. Math. Comput. 1974, 28, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Goodrich, C.; Peterson, A.C. Discrete Fractional Calculus; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Zaslavsky, G.M.; Zaslavskij, G.M. Hamiltonian Chaos and Fractional Dynamics; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Wang, Y.; Liu, S.; Li, H. On fractional difference logistic maps: Dynamic analysis and synchronous control. Nonlinear Dyn. 2020, 102, 579–588. [Google Scholar] [CrossRef]
- Kassim, S.; Hamiche, H.; Djennoune, S.; Bettayeb, M. A novel secure image transmission scheme based on synchronization of fractional-order discrete-time hyperchaotic systems. Nonlinear Dyn. 2017, 88, 2473–2489. [Google Scholar] [CrossRef]
- Khennaoui, A.A.; Ouannas, A.; Bendoukha, S.; Grassi, G.; Lozi, R.P.; Pham, V.T. On fractional–order discrete–time systems: Chaos, stabilization and synchronization. Chaos Solitons Fractals 2019, 119, 150–162. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D. Discrete fractional logistic map and its chaos. Nonlinear Dyn. 2014, 75, 283–287. [Google Scholar] [CrossRef]
- Alpar, O. Dynamics of a new generalized fractional one-dimensional map: Quasiperiodic to chaotic. Nonlinear Dyn. 2018, 94, 1377–1390. [Google Scholar] [CrossRef]
- Khennaoui, A.A.; Ouannas, A.; Bendoukha, S.; Grassi, G.; Wang, X.; Pham, V.T.; Alsaadi, F.E. Chaos, control, and synchronization in some fractional-order difference equations. Adv. Differ. Equ. 2019, 1, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Sun, K.; Peng, D.; Ai, W. Dynamics of a higher dimensional fractional-order chaotic map. Phys. A Stat. Mech. Its Appl. 2019, 525, 96–107. [Google Scholar] [CrossRef]
- Wang, L.; Sun, K.; Peng, Y.; He, S. Chaos and complexity in a fractional-order higher-dimensional multi-cavity chaotic map. Chaos Solitons Fractals 2020, 131, 109488. [Google Scholar] [CrossRef]
- Rong, K.; Bao, H.; Li, H.; Hua, Z.; Bao, B. Memristive Hénon map with hidden Neimark-Sacker bifurcations. Nonlinear Dyn. 2022, 108, 4459–4470. [Google Scholar] [CrossRef]
- Bao, H.; Li, H.; Hua, Z.; Xu, Q.; Bao, B.C. Sine Transform-Based Memristive Hyperchaotic Model with Hardware Implementation. IEEE Trans. Ind. Inform. 2022; in press. [Google Scholar] [CrossRef]
- Li, K.; Bao, H.; Li, H.; Ma, J.; Hua, Z.; Bao, B. Memristive Rulkove neuron model with magnetic inclution effects. IEEE Trans. Ind. Inform. 2021, 18, 1726–1736. [Google Scholar] [CrossRef]
- Bao, H.; Hua, Z.; Li, H.; Chen, M.; Bao, B. Discrete memristor hyperchaotic maps. IEEE Trans. Circuits Syst. Regul. Pap. 2021, 68, 4534–4544. [Google Scholar] [CrossRef]
- Hadjabi, F.; Ouannas, A.; Shawagfeh, N.; Khennaoui, A.A.; Grassi, G. On Two-Dimensional Fractional Chaotic Maps with Symmetries. Symmetry 2020, 12, 756. [Google Scholar] [CrossRef]
- Liu, T.; Mou, J.; Banerjee, S.; Cao, Y.; Han, X. A new fractional-order discrete BVP oscillator model with coexisting chaos and hyperchaos. Nonlinear Dyn. 2021, 106, 1011–1026. [Google Scholar] [CrossRef]
- Amatroud, A.O.; Khennaoui, A.A.; Ouannas, A.; Pham, V.T. Infinite Line of Equilibrium in a Novel Fractional Map with Coexisting Attractors and Initial Offset Boosting. Available online: https://www.degruyter.com/document/doi/10.1515/ijnsns-2020-0180/pdf (accessed on 5 December 2022).
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [Green Version]
- Ouannas, A.; Khennaoui, A.A.; Momani, S.; Grassi, G.; Pham, V.T. Chaos and control of a three-dimensional fractional order discrete-time system with no equilibrium and its synchronization. AIP Adv. 2020, 10, 045310. [Google Scholar] [CrossRef]
- Ouannas, A.; Bendoukha, S. Generalized and inverse generalized synchronization of fractional–order discrete–time chaotic systems with non–identical dimensions. Adv. Differ. Equ. 2018, 2018, 303. [Google Scholar] [CrossRef]
- Bendoukha, S.; Ouannas, A.; Wang, X.; Khennaoui, A.A.; Pham, V.T.; Grassi, G.; Huynh, V.V. The co-existence of different synchronization types in fractional-order discrete-time chaotic systems with non–identical dimensions and orders. Entropy 2018, 20, 710. [Google Scholar] [CrossRef] [Green Version]
- Ouannas, A.; Khennaoui, A.A.; Zehrour, O.; Bendoukha, S.; Grassi, G.; Pham, V.T. Synchronisation of integer-order and fractional-order discrete-time chaotic systems. Pramana 2019, 92, 52. [Google Scholar] [CrossRef]
- Bao, B.C.; Li, H.Z.; Zhu, L.; Zhang, X.; Chen, M. Initial-switched boosting bifurcations in 2D hyperchaotic map. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 033107. [Google Scholar] [CrossRef]
- Khennaoui, A.A.; Almatroud, A.O.; Ouannas, A.; Al-sawalha, M.M.; Grassi, G.; Pham, V.T.; Batiha, I.M. An Unprecedented 2-Dimensional Discrete-Time Fractional-Order System and Its Hidden Chaotic Attractors. Math. Probl. Eng. 2021, 2021, 6768215. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D. Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps. Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 95–100. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, J.; Wang, X.; Zeng, Z. A novel no-equilibruim HR neuron model with hidden homogeneous extreme multistability. Chaos Solitons Frractals 2021, 145, 11761. [Google Scholar]
- Li, C.; Sprott, J.C. Finding coexisting attractors using amplitude control. Nonlinear Dyn. 2014, 780, 2059–2064. [Google Scholar] [CrossRef]
- Leutcho, G.D.; Wang, H.; Kengne, R.; Kengne, L.K.; Njitacke, Z.T.; Fozin, T.F. Symmetry breaking amplitude control and constant Lyapunov exponent based on single parameter snap flows. Eur. Phys. J. Spec. Top. 2021, 230, 1887–1903. [Google Scholar] [CrossRef]
- Viayajumar, M.D.; Natiq, H.; Leutcho, G.D.; Rajagopal, K.; Jafri, S.; Hussain, I. Hidden and self-Excited Collective Dynamics of a New Multistable Hyper-Jerk System with Unique Equilibrium. Int. J. Bifurc. Chaos 2022, 32, 2250063. [Google Scholar] [CrossRef]
- Cafagna, D.; Grassi, G. An effective method for detecting chaos in fractional-order systems. Int. J. Bifurc. Chaos 2010, 20, 669–678. [Google Scholar] [CrossRef]
- Baleanu, D.; Wu, G.C.; Bai, Y.R.; Chen, F.L. Stability analysis of Caputoâ like discrete fractional systems. Commun. Nonlinear Sci. Numer. Simul. 2017, 48, 520–530. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khennaoui, A.-A.; Ouannas, A.; Bekiros, S.; Aly, A.A.; Alotaibi, A.; Jahanshahi, H.; Alsubaie, H. Hidden Homogeneous Extreme Multistability of a Fractional-Order Hyperchaotic Discrete-Time System: Chaos, Initial Offset Boosting, Amplitude Control, Control, and Synchronization. Symmetry 2023, 15, 139. https://doi.org/10.3390/sym15010139
Khennaoui A-A, Ouannas A, Bekiros S, Aly AA, Alotaibi A, Jahanshahi H, Alsubaie H. Hidden Homogeneous Extreme Multistability of a Fractional-Order Hyperchaotic Discrete-Time System: Chaos, Initial Offset Boosting, Amplitude Control, Control, and Synchronization. Symmetry. 2023; 15(1):139. https://doi.org/10.3390/sym15010139
Chicago/Turabian StyleKhennaoui, Amina-Aicha, Adel Ouannas, Stelios Bekiros, Ayman A. Aly, Ahmed Alotaibi, Hadi Jahanshahi, and Hajid Alsubaie. 2023. "Hidden Homogeneous Extreme Multistability of a Fractional-Order Hyperchaotic Discrete-Time System: Chaos, Initial Offset Boosting, Amplitude Control, Control, and Synchronization" Symmetry 15, no. 1: 139. https://doi.org/10.3390/sym15010139
APA StyleKhennaoui, A.-A., Ouannas, A., Bekiros, S., Aly, A. A., Alotaibi, A., Jahanshahi, H., & Alsubaie, H. (2023). Hidden Homogeneous Extreme Multistability of a Fractional-Order Hyperchaotic Discrete-Time System: Chaos, Initial Offset Boosting, Amplitude Control, Control, and Synchronization. Symmetry, 15(1), 139. https://doi.org/10.3390/sym15010139