Observation of Hidden Asymmetry in Polarization Space for Dissipative Soliton Fiber Lasers
<p>Schematic of the dissipative soliton fiber lasers and measurement system.</p> "> Figure 2
<p>(<b>a</b>) Autocorrelation trace of DSs. (<b>b</b>) RF spectrum of the pulse train. (<b>c</b>) Optical spectrum of DSs measured by OSA. (<b>d</b>) single-shot spectrum at 250 RT by DFT (<b>e</b>) shot-to-shot spectral evolution by DFT.</p> "> Figure 3
<p>(<b>a</b>) Single-shot optical spectra of four channels. (<b>b</b>) Wavelength-resolved SOPs on Poincaré sphere. (<b>c</b>) RT-resolved SOPs at selected three wavelengths.</p> "> Figure 4
<p>Spectra and SOP for DSs with spectrum slanting to red wavelength side. (<b>a</b>) Shot-to-shot spectral evolution detected by DFT. (<b>b</b>) Optical spectrum measured by OSA. (<b>c</b>) Wavelength-resolved SOPs on Poincaré sphere.</p> "> Figure 5
<p>Spectra and SOP for DSs with spectrum slanting to blue wavelength side. (<b>a</b>) Shot-to-shot spectral evolution detected by DFT. (<b>b</b>) Optical spectrum measured by OSA. (<b>c</b>) Wavelength-resolved SOPs on Poincaré sphere.</p> "> Figure 6
<p>(<b>a</b>) Shot-to-shot spectral evolution measured by DFT. (<b>b</b>) Optical spectrum measured by OSA. (<b>c</b>) Wavelength-resolved SOPs on Poincaré sphere.</p> "> Figure 7
<p>(<b>a</b>) Single-shot optical spectra obtained in the four channels. (<b>b</b>) RT-resolved SOPs at three selected wavelengths.</p> ">
Abstract
:1. Introduction
2. Experiment Setup
3. Results
3.1. DSs with Flat Spectrum
3.2. DSs with Spectrum Slanting to Red Wavelength Side
3.3. DSs with Spectrum Slanting to Blue Wavelength Side
3.4. DSs with Distorted Spectrum
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arrowsmith, D.K.; Cartwright, J.H.; Lansbury, A.N.; Place, C.M. The Bogdanov map: Bifurcations, mode locking, and chaos in a dissipative system. Int. J. Bifurc. Chaos 1993, 3, 803–842. [Google Scholar] [CrossRef] [Green Version]
- Ankiewicz, A.; Akhmediev, N. Dissipative Solitons: From Optics to Biology and Medicine; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Renninger, W.; Chong, A.; Wise, F. Dissipative solitons in normal-dispersion fiber lasers. Phys. Rev. A 2008, 77, 023814. [Google Scholar] [CrossRef]
- Grelu, P.; Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photonics 2012, 6, 84–92. [Google Scholar] [CrossRef]
- Chouli, S.; Grelu, P. Soliton rains in a fiber laser: An experimental study. Phys. Rev. A 2010, 81, 063829. [Google Scholar] [CrossRef]
- Horowitz, M.; Barad, Y.; Silberberg, Y. Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser. Opt. Lett. 1997, 22, 799–801. [Google Scholar] [CrossRef]
- Cundiff, S.T.; Soto-Crespo, J.M.; Akhmediev, N. Experimental evidence for soliton explosions. Phys. Rev. Lett. 2002, 88, 073903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihalache, D.; Mazilu, D.; Lederer, F.; Leblond, H.; Malomed, B. Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation. Phys. Rev. A 2007, 75, 033811. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.; Zhao, L.-M.; Zhao, B.; Liu, A. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Phys. Rev. A 2005, 72, 043816. [Google Scholar] [CrossRef]
- Kieu, K.; Renninger, W.; Chong, A.; Wise, F. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. Opt. Lett. 2009, 34, 593–595. [Google Scholar] [CrossRef] [Green Version]
- Krupa, K.; Nithyanandan, K.; Grelu, P. Vector dynamics of incoherent dissipative optical solitons. Optica 2017, 4, 1239–1244. [Google Scholar] [CrossRef]
- Yun, L. Generation of vector dissipative and conventional solitons in large normal dispersion regime. Opt. Express 2017, 25, 18751–18759. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-X.; Li, X.-Y.; Li, T.-J.; Zhan, Z.-Y.; Liu, M.; Li, C.; Luo, A.-P.; Zhou, P.; Wong, K.K.-Y.; Xu, W.-C. 1.7-μm dissipative soliton Tm-doped fiber laser. Photonics Res. 2021, 9, 873–878. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, S.; Li, X.; Han, M. Optimal design of higher energy dissipative-soliton fiber lasers. Opt. Commun. 2015, 335, 212–217. [Google Scholar] [CrossRef]
- Chi, H.; Liu, B.; Song, Y.; Hu, M.; Chai, L.; Shen, W.; Liu, X.; Wang, C. Nonlinearity optimization of dissipative-soliton fiber laser for generation of pulses with 350 kW peak power. High Power Laser Sci. Eng. 2018, 2, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Moores, J.D. On the Ginzburg-Landau laser mode-locking model with fifth-order saturable absorber term. Opt. Commun. 1993, 96, 65–70. [Google Scholar] [CrossRef]
- Cabasse, A.; Ortaç, B.; Martel, G.; Hideur, A.; Limpert, J. Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion. Opt. Express 2008, 16, 19322–19329. [Google Scholar] [CrossRef]
- Liu, X. Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser. Phys. Rev. A 2010, 81, 023811. [Google Scholar] [CrossRef]
- Yun, L.; Liu, X.; Mao, D. Observation of dual-wavelength dissipative solitons in a figure-eight erbium-doped fiber laser. Opt. Express 2012, 20, 20992–20997. [Google Scholar] [CrossRef]
- Goda, K.; Jalali, B. Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photonics 2013, 7, 102–112. [Google Scholar] [CrossRef]
- Chen, H.-J.; Liu, M.; Yao, J.; Hu, S.; He, J.-B.; Luo, A.-P.; Xu, W.-C.; Luo, Z.-C. Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion. Opt. Express 2018, 26, 2972–2982. [Google Scholar] [CrossRef]
- Peng, J.; Zeng, H. Soliton collision induced explosions in a mode-locked fibre laser. Commun. Phys. 2019, 2, 34. [Google Scholar] [CrossRef] [Green Version]
- Runge, A.F.; Broderick, N.G.; Erkintalo, M. Observation of soliton explosions in a passively mode-locked fiber laser. Optica 2015, 2, 36–39. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Cao, Y.; Wabnitz, S.; Ran, H.; Kong, L.; Li, Y.; Huang, W.; Huang, L.; Feng, D.; Zhu, T. Polarization evolution dynamics of dissipative soliton fiber lasers. Photonics Res. 2019, 7, 1331–1339. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Luo, Z.-C.; Kang, J.; Wong, K.K. Mutually ignited soliton explosions in a fiber laser. Opt. Lett. 2018, 43, 4132–4135. [Google Scholar] [CrossRef]
- Suret, P.; Koussaifi, R.E.; Tikan, A.; Evain, C.; Randoux, S.; Szwaj, C.; Bielawski, S. Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nat. Commun. 2016, 7, 13136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Cui, Y.; Huang, L.; Tong, L.; Liu, X. Full-field real-time characterization of creeping solitons dynamics in a mode-locked fiber laser. Opt. Lett. 2020, 45, 6246–6249. [Google Scholar] [CrossRef]
- Tang, D.; Zhang, H.; Zhao, L.; Wu, X. Observation of high-order polarization-locked vector solitons in a fiber laser. Phys. Rev. Lett. 2008, 101, 153904. [Google Scholar] [CrossRef] [Green Version]
- Mou, C.; Sergeyev, S.; Rozhin, A.; Turistyn, S. All-fiber polarization locked vector soliton laser using carbon nanotubes. Opt. Lett. 2011, 36, 3831–3833. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Luo, A.-P.; Luo, Z.-C.; Xu, W.-C. Dynamic trapping of a polarization rotation vector soliton in a fiber laser. Opt. Lett. 2017, 42, 330–333. [Google Scholar] [CrossRef]
- Gao, L.; Kong, L.; Cao, Y.; Wabnitz, S.; Ran, H.; Li, Y.; Huang, W.; Huang, L.; Liu, M.; Zhu, T. Optical polarization rogue waves from supercontinuum generation in zero dispersion fiber pumped by dissipative soliton. Opt. Express 2019, 27, 23830–23838. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Wu, Q.; Cao, Y.; Wabnitz, S.; Zhu, T. Optical polarization rogue waves and their identifications. J. Phys. Photonics 2020, 2, 032004. [Google Scholar] [CrossRef]
- Wu, Q.; Gao, L.; Cao, Y.; Wabnitz, S.; Chang, Z.; Liu, A.; Huang, J.; Huang, L.; Zhu, T. Single-shot measurement of wavelength-resolved state of polarization dynamics in ultrafast lasers using dispersed division-of-amplitude. Photonics Res. 2023, 11, 35–43. [Google Scholar] [CrossRef]
- Li, Y.; Gao, L.; Zhu, T.; Cao, Y.; Liu, M.; Qu, D.; Qiu, F.; Huang, X. Graphene-assisted all-fiber optical-controllable laser. IEEE J. Sel. Top. Quantum Electron. 2017, 24, 0901709. [Google Scholar] [CrossRef]
- Azzam, R. Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four Stokes parameters of light. Opt. Acta Int. J. Opt. 1982, 29, 685–689. [Google Scholar] [CrossRef]
- Azzam, R. Beam-splitters for the division-of-amplitude photopolarimeter. Opt. Acta Int. J. Opt. 1985, 32, 1407–1412. [Google Scholar] [CrossRef]
- Krishnan, S. Calibration, properties, and applications of the division-of-amplitude photopolarimeter at 632.8 and 1523 nm. JOSA A 1992, 9, 1615–1622. [Google Scholar] [CrossRef]
- Kelleher, E.J.R.; Travers, J.C.; Ippen, E.P.; Sun, Z.; Ferrari, A.C.; Popov, S.V.; Taylor, J.R. Generation and direct measurement of giant chirp in a passively mode-locked laser. Opt. Lett. 2009, 34, 3526–3528. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Xu, Z.; Shu, X. Spatio-spectral dynamics of the pulsating dissipative solitons in a normal-dispersion fiber laser. Opt. Lett. 2018, 43, 3602–3605. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; He, Z.; Gao, Q.; Zeng, C.; Yun, L.; Du, Y.; Lu, H.; Sun, Z.; Zhao, J. Birefringence-managed normal-dispersion fiber laser delivering energy-tunable chirp-free solitons. Ultrafast Sci. 2022, 2022, 9760631. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Y.; Wu, Q.; Chang, Z.; Liu, A.; Yu, Y.; Dai, S.; Cai, P.; Huang, L.; Gao, L.; Zhu, T. Observation of Hidden Asymmetry in Polarization Space for Dissipative Soliton Fiber Lasers. Symmetry 2023, 15, 95. https://doi.org/10.3390/sym15010095
Long Y, Wu Q, Chang Z, Liu A, Yu Y, Dai S, Cai P, Huang L, Gao L, Zhu T. Observation of Hidden Asymmetry in Polarization Space for Dissipative Soliton Fiber Lasers. Symmetry. 2023; 15(1):95. https://doi.org/10.3390/sym15010095
Chicago/Turabian StyleLong, Yu, Qiang Wu, Zhenghu Chang, Ai Liu, Yuanjie Yu, Shiyun Dai, Peng Cai, Ligang Huang, Lei Gao, and Tao Zhu. 2023. "Observation of Hidden Asymmetry in Polarization Space for Dissipative Soliton Fiber Lasers" Symmetry 15, no. 1: 95. https://doi.org/10.3390/sym15010095
APA StyleLong, Y., Wu, Q., Chang, Z., Liu, A., Yu, Y., Dai, S., Cai, P., Huang, L., Gao, L., & Zhu, T. (2023). Observation of Hidden Asymmetry in Polarization Space for Dissipative Soliton Fiber Lasers. Symmetry, 15(1), 95. https://doi.org/10.3390/sym15010095