Analytical View of Nonlinear Delay Differential Equations Using Sawi Iterative Scheme
<p>2D graphical error of <math display="inline"><semantics> <mrow> <mi>ϑ</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>5</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>2D graphical error of <math display="inline"><semantics> <mrow> <mi>ϑ</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>8</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>2D graphical error of <math display="inline"><semantics> <mrow> <mi>ϑ</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>2D graphical error of <math display="inline"><semantics> <mrow> <mi>ϑ</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>5</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Sawi Transform
- (a)
- (b)
- (c)
3. Basic Idea of the HPM
- (i)
- The second order derivative of with respect to v must be small, as the parameter p may be reasonably large, i.e.,
- (ii)
- must be smaller than one, so that, the series converges, with being the inverse of the linear operator .
4. Strategy of SIS
5. Numerical Applications
5.1. Example 1
5.2. Example 2
5.3. Example 3
5.4. Example 4
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rezazadeh, H.; Younis, M.; Eslami, M.; Bilal, M.; Younas, U. New exact traveling wave solutions to the (2+ 1)-dimensional chiral nonlinear schrödinger equation. Math. Model. Nat. Phenom. 2021, 16, 38. [Google Scholar] [CrossRef]
- Eslami, M. Exact traveling wave solutions to the fractional coupled nonlinear schrodinger equations. Appl. Math. Comput. 2016, 285, 141–148. [Google Scholar] [CrossRef]
- Gepreel, K.A.; Nofal, T.A.; Al-Thobaiti, A.A. The modified rational jacobi elliptic functions method for nonlinear differential difference equations. J. Appl. Math. 2012, 2012, 427479. [Google Scholar] [CrossRef] [Green Version]
- Georgieva, A.; Pavlova, A. Fuzzy sawi decomposition method for solving nonlinear partial fuzzy differential equations. Symmetry 2021, 13, 1580. [Google Scholar] [CrossRef]
- Islam, R.; Alam, M.N.; Hossain, A.; Roshid, H.; Akbar, M. Traveling wave solutions of nonlinear evolution equations via exp (-ϕ (η))-expansion method. Glob. J. Sci. Front. Res. 2013, 13, 63–71. [Google Scholar]
- Eslami, M.; Rezazadeh, H. The first integral method for wu–zhang system with conformable time-fractional derivative. Calcolo 2016, 53, 475–485. [Google Scholar] [CrossRef]
- Raslan, K.; Ali, K.K.; Shallal, M.A. The modified extended tanh method with the riccati equation for solving the space-time fractional ew and mew equations, Chaos. Solitons Fractals 2017, 103, 404–409. [Google Scholar] [CrossRef]
- Nejla, G.; Emine, G.K.; Yusuf, G. Chebyshev-tau method for the linear klein-gordon equation. Int. J. Phys. Sci. 2012, 7, 5723–5728. [Google Scholar]
- Rezazadeh, H.; Ullah, N.; Akinyemi, L.; Shah, A.; Mirhosseini-Alizamin, S.M.; Chu, Y.-M.; Ahmad, H. Optical soliton solutions of the generalized non-autonomous nonlinear schrödinger equations by the new kudryashov’s method. Results Phys. 2021, 24, 104179. [Google Scholar] [CrossRef]
- Gepreel, K.A.; Al-Thobaiti, A. Exact solutions of nonlinear partial fractional differential equations using fractional sub-equation method. Indian J. Phys. 2014, 88, 293–300. [Google Scholar] [CrossRef]
- Althobaiti, A.; Althobaiti, S.; El-Rashidy, K.; Seadawy, A.R. Exact solutions for the nonlinear extended kdv equation in a stratified shear flow using modified exponential rational method. Results Phys. 2021, 29, 104723. [Google Scholar] [CrossRef]
- Cakmak, M.; Alkan, S. A numerical method for solving a class of systems of nonlinear pantograph differential equations. Alex. Eng. J. 2022, 61, 2651–2661. [Google Scholar] [CrossRef]
- Nuruddeen, R.I.; Aboodh, K.S.; Ali, K.K. Analytical investigation of soliton solutions to three quantum zakharov-kuznetsov equations. Commun. Theor. Phys. 2018, 70, 405. [Google Scholar] [CrossRef]
- Alaroud, M.; Al-Smadi, M.; Ahmad, R.R.; Din, U.K.S. An analytical numerical method for solving fuzzy fractional volterra integro-differential equations. Symmetry 2019, 11, 205. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.-S.; Rach, R.; Wazwaz, A.-M. Higher order numeric solutions of the lane–emden-type equations derived from the multi-stage modified adomian decomposition method. Int. J. Comput. Math. 2017, 94, 197–215. [Google Scholar] [CrossRef]
- Dehghan, M.; Salehi, R. Solution of a nonlinear time-delay model in biology via semi-analytical approaches. Comput. Phys. Commun. 2010, 181, 1255–1265. [Google Scholar] [CrossRef]
- Luo, X.; Habib, M.; Karim, S.; Wahash, H.A. Semianalytical approach for the approximate solution of delay differential equations. Complexity 2022, 2022, 1049561. [Google Scholar] [CrossRef]
- Khan, H.; Liao, S.-J.; Mohapatra, R.; Vajravelu, K. An analytical solution for a nonlinear time-delay model in biology. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 3141–3148. [Google Scholar] [CrossRef]
- Xu, M.-Q.; Lin, Y.-Z. Simplified reproducing kernel method for fractional differential equations with delay. Appl. Math. Lett. 2016, 52, 156–161. [Google Scholar] [CrossRef]
- Anakira, N. A new accurate procedure for solving nonlinear delay differential equations. J. Math. Comput. Sci. 2021, 11, 4673–4685. [Google Scholar]
- He, J.-H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [Google Scholar] [CrossRef]
- He, J.-H. Homotopy perturbation method: A new nonlinear analytical technique. Appl. Math. Comput. 2003, 135, 73–79. [Google Scholar] [CrossRef]
- Khuri, S.A.; Sayfy, A. A laplace variational iteration strategy for the solution of differential equations. Appl. Math. Lett. 2012, 25, 2298–2305. [Google Scholar] [CrossRef]
- Nadeem, M.; Li, F. He–laplace method for nonlinear vibration systems and nonlinear wave equations, Journal of Low Frequency Noise. Vib. Act. Control. 2019, 38, 1060–1074. [Google Scholar]
- Ganji, D.; Sadighi, A. Application of he’s homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations. Int. J. Nonlinear Sci. Numer. Simul. 2006, 7, 411–418. [Google Scholar] [CrossRef]
- Mishra, R.; Aggarwal, S.; Chaudhary, L.; Kumar, A. Relationship between sumudu and some efficient integral transforms. Int. J. Innov. Technol. Explor. Eng. 2020, 9, 153–159. [Google Scholar] [CrossRef]
- Attaweel, M.E.; Almassry, H.A. A new application of sawi transform for solving volterra integral equations and volterra integro-differential equations. Libyan J. Sci. 2019, 22, 64–77. [Google Scholar]
- Singh, G.P.; Aggarwal, S. Sawi transform for population growth and decay problems, International Journal of Latest Technology in Engineering. Manag. Appl. Sci. 2019, 8, 157–162. [Google Scholar]
- Higazy, M.; Aggarwal, S. Sawi transformation for system of ordinary differential equations with application. Ain Shams Eng. J. 2021, 12, 3173–3182. [Google Scholar] [CrossRef]
- Nadeem, M.; He, J.-H. The homotopy perturbation method for fractional differential equations: Part 2, two-scale transform. Int. J. Numer. Methods Heat Fluid Flow 2021, 32, 559–567. [Google Scholar] [CrossRef]
- Biazar, J.; Ghazvini, H. Convergence of the homotopy perturbation method for partial differential equations. Nonlinear Anal. Real World Appl. 2009, 10, 2633–2640. [Google Scholar] [CrossRef]
- MTurkyilmazoglu, M. Convergence of the homotopy perturbation method. Int. J. Nonlinear Sci. Numer. Simul. 2011, 12, 9–14. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadeem, M.; Edalatpanah, S.A.; Mahariq, I.; Aly, W.H.F. Analytical View of Nonlinear Delay Differential Equations Using Sawi Iterative Scheme. Symmetry 2022, 14, 2430. https://doi.org/10.3390/sym14112430
Nadeem M, Edalatpanah SA, Mahariq I, Aly WHF. Analytical View of Nonlinear Delay Differential Equations Using Sawi Iterative Scheme. Symmetry. 2022; 14(11):2430. https://doi.org/10.3390/sym14112430
Chicago/Turabian StyleNadeem, Muhammad, Seyyed Ahmad Edalatpanah, Ibrahim Mahariq, and Wael Hosny Fouad Aly. 2022. "Analytical View of Nonlinear Delay Differential Equations Using Sawi Iterative Scheme" Symmetry 14, no. 11: 2430. https://doi.org/10.3390/sym14112430
APA StyleNadeem, M., Edalatpanah, S. A., Mahariq, I., & Aly, W. H. F. (2022). Analytical View of Nonlinear Delay Differential Equations Using Sawi Iterative Scheme. Symmetry, 14(11), 2430. https://doi.org/10.3390/sym14112430