Dynamic Behaviors of Optimized K12 Anti-Ram Bollards
<p>Four types of perimeter protection: (<b>a</b>) Anti-ram bollard; (<b>b</b>) Road barrier; (<b>c</b>) Tire breakers; (<b>d</b>) Car stones.</p> "> Figure 2
<p>Vehicle penetration.</p> "> Figure 3
<p>Post-test side views: (<b>a</b>) Test I; (<b>b</b>) Test II; (<b>c</b>) Test III; (<b>d</b>) Test IV; (<b>e</b>) Test V [<a href="#B9-symmetry-14-01703" class="html-bibr">9</a>,<a href="#B10-symmetry-14-01703" class="html-bibr">10</a>,<a href="#B11-symmetry-14-01703" class="html-bibr">11</a>,<a href="#B12-symmetry-14-01703" class="html-bibr">12</a>].</p> "> Figure 4
<p>Full-scale truck crash test: (<b>a</b>) before and (<b>b</b>) after the collision [<a href="#B14-symmetry-14-01703" class="html-bibr">14</a>]. (Reprinted with permission from Ref. [<a href="#B14-symmetry-14-01703" class="html-bibr">14</a>]. 2015, Elsevier.)</p> "> Figure 5
<p>FE model of Ford F800 (version 0.2, 2008) [<a href="#B27-symmetry-14-01703" class="html-bibr">27</a>].</p> "> Figure 6
<p>Truck FE models: (<b>a</b>) Ford F800; (<b>b</b>) modified model corresponding to Test II.</p> "> Figure 7
<p>Vehicle dimension measurement.</p> "> Figure 8
<p>Test FABSs and corresponding FE models: (<b>a</b>) Test I; (<b>b</b>) Test II; (<b>c</b>) Test III; (<b>d</b>) Test IV; (<b>e</b>) Test V.</p> "> Figure 8 Cont.
<p>Test FABSs and corresponding FE models: (<b>a</b>) Test I; (<b>b</b>) Test II; (<b>c</b>) Test III; (<b>d</b>) Test IV; (<b>e</b>) Test V.</p> "> Figure 9
<p>Comparison of the collision process between Test I and the simulation.</p> "> Figure 10
<p>Comparisons between Test II and the simulation: (<b>a</b>) collision process; (<b>b</b>) bollard deflection-time histories; (<b>c</b>) X displacement-time histories; (<b>d</b>) X velocity-time histories; (<b>e</b>) acceleration-time histories.</p> "> Figure 10 Cont.
<p>Comparisons between Test II and the simulation: (<b>a</b>) collision process; (<b>b</b>) bollard deflection-time histories; (<b>c</b>) X displacement-time histories; (<b>d</b>) X velocity-time histories; (<b>e</b>) acceleration-time histories.</p> "> Figure 11
<p>Comparisons between Test III and the simulation: (<b>a</b>) collision process; (<b>b</b>) bollard deflection-time histories; (<b>c</b>) X displacement-time histories; (<b>d</b>) X velocity-time histories; (<b>e</b>) acceleration-time histories.</p> "> Figure 11 Cont.
<p>Comparisons between Test III and the simulation: (<b>a</b>) collision process; (<b>b</b>) bollard deflection-time histories; (<b>c</b>) X displacement-time histories; (<b>d</b>) X velocity-time histories; (<b>e</b>) acceleration-time histories.</p> "> Figure 12
<p>Comparisons between Test IV and the simulation: (<b>a</b>) collision process; (<b>b</b>) bollard deflection-time histories; (<b>c</b>) X displacement-time histories; (<b>d</b>) X velocity-time histories; (<b>e</b>) acceleration-time histories.</p> "> Figure 12 Cont.
<p>Comparisons between Test IV and the simulation: (<b>a</b>) collision process; (<b>b</b>) bollard deflection-time histories; (<b>c</b>) X displacement-time histories; (<b>d</b>) X velocity-time histories; (<b>e</b>) acceleration-time histories.</p> "> Figure 13
<p>Comparisons between Test V and the simulation: (<b>a</b>) collision process; (<b>b</b>) bollard deflection-time histories; (<b>c</b>) X displacement-time histories; (<b>d</b>) X velocity-time histories; (<b>e</b>) acceleration-time histories.</p> "> Figure 13 Cont.
<p>Comparisons between Test V and the simulation: (<b>a</b>) collision process; (<b>b</b>) bollard deflection-time histories; (<b>c</b>) X displacement-time histories; (<b>d</b>) X velocity-time histories; (<b>e</b>) acceleration-time histories.</p> "> Figure 14
<p>Geometric parameters of anti-ram bollard.</p> "> Figure 15
<p>Simulated impact process: (<b>a</b>) 0.01 s; (<b>b</b>) 0.12 s; (<b>c</b>) 0.40 s; (<b>d</b>) 1.00 s.</p> "> Figure 16
<p>Bollard deflection-time history.</p> ">
Abstract
:1. Introduction
2. FE Model
2.1. FE Model of Truck
2.2. FE Model of Anti-Ram Bollard
2.3. Contact Algorithm and Boundary Condition
2.4. Model Validation
3. Parametric Study
3.1. Material Strength
3.2. Size of the Anti-Ram Bollard
3.3. Size of the Foundation
3.4. Optimization Design
4. Conclusions
- (1)
- The improvement of steel tube stress and concrete compressive strength can enhance the protection capacity of the anti-ram bollard, including the damage tolerance and deformation ability. For example, when the strength of concrete reaches 40 MPa, the protection capacity of the anti-ram bollard increases to the maximum when the concrete compressive strength reaches 40 MPa from 30 MPa.
- (2)
- Increasing the bollard height and diameter can effectively reduce vehicle penetration. Moreover, When the bollard spacing is less than half of the width of the vehicle, the left and right bollards beside the central bollard will also dissipate part of the impact energy, which is better for protection.
- (3)
- In order to effectively improve the protection capability of the anti-ram bollard, the foundation depth should be increased as well as the bollard height to restrain the deformation of the impacted bollard.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kiakojouri, F.; De Biagi, V.; Chiaia, B.; Sheidaii, M.R. Strengthening and retrofitting techniques to mitigate progressive collapse: A critical review and future research agenda. Eng. Struct. 2022, 262, 114274. [Google Scholar] [CrossRef]
- Kiakojouri, F.; Sheidaii, M.R.; De Biagi, V.; Chiaia, B. Progressive collapse of structures: A discussion on annotated nomenclature. Structures 2021, 29, 1417–1423. [Google Scholar] [CrossRef]
- Russell, J.; Sagaseta, J.; Cormie, D.; Jones, A. Historical review of prescriptive design rules for robustness after the collapse of Ronan Point. Structures 2019, 20, 365–373. [Google Scholar] [CrossRef]
- Heng, K.; Li, R.W.; Li, Z.R.; Wu, H. Dynamic responses of highway bridge subjected to heavy truck impact. Eng. Struct. 2021, 232, 111828. [Google Scholar] [CrossRef]
- Heng, K.; Li, R.; Wu, H. Damage assessment of simply-supported double-pier bent bridge under heavy truck collision. J. Bridge Eng. 2022, 27, 04022021. [Google Scholar] [CrossRef]
- Do, T.V.; Pham, T.M.; Hao, H. Proposed design procedure for reinforced concrete bridge columns subjected to vehicle collisions. Structures 2019, 22, 213–229. [Google Scholar] [CrossRef]
- Steven, A.; Alice, A.; Dikshant, S. Performance-based design of bridge piers under vehicle collision. Eng. Struct. 2019, 191, 752–765. [Google Scholar]
- US Department of State. Test Method for Vehicle Crash Testing of Perimeter Barriers and Gates, SD-STD-02.01, Revision A; US Department of State: Washington, DC, USA, 2003.
- Rado, Z.; Tallon, R. Crash Testing of RSA/KC Anti-Ram Foundation Bollard Pad in Accordance with US Department of State Diplomatic Security SD-STD-02.01, Revision A; Test Report; Pennsylvania Transportation Institute: Pennsylvania, PA, USA, 2005. [Google Scholar]
- Ivory, M.A. Crash TEST Report for Perimeter Barriers and Gates Tested to SD-STD-02.01, Revision A; Test Report No. TR-P25039-02-NC; KARCO Engineering, LLC.: Adelanto, CA, USA, 2005. [Google Scholar]
- Ivory, M.A. Crash Test Report for Perimeter Barriers and Gates Tested to SD-STD-02.01, Revision A; Test Report No. TR-P25076-01-NC; KARCO Engineering, LLC.: Adelanto, CA, USA, 2005. [Google Scholar]
- Ivory, M.A. Crash Test Report for Perimeter Barriers and Gates Tested to SD-STD-02.01, Revision A; Test Report No. TR-P25039-01-NC; KARCO Engineering, LLC.: Adelanto, CA, USA, 2005. [Google Scholar]
- Ivory, M.A. Crash Test Report for Perimeter Barriers and Gates Tested to SD-STD-02.01, Revision A; Test Report No. TR-P26212-01-NC; KARCO Engineering, LLC.: Adelanto, CA, USA, 2006. [Google Scholar]
- Chen, L.; Xiao, Y.; Xiao, G.; Liu, C.; Agrawal, A.K. Test and numerical simulation of truck collision with anti-ram bollards. Int. J. Impact Eng. 2015, 75, 30–39. [Google Scholar] [CrossRef]
- Cao, R.; Agrawal, A.K.; El-Tawil, S.; Wong, W. Numerical Studies on Concrete Barriers Subject to MASH Truck Impact. J. Bridge Eng. 2020, 25, 04020035. [Google Scholar] [CrossRef]
- Cao, R.; Agrawal, A.K.; El-Tawil, S.; Wong, W. Performance-Based Design Framework for Concrete Barriers Subjected to Truck Collision. J. Bridge Eng. 2021, 26, 04021047. [Google Scholar] [CrossRef]
- Cao, R.; El-Tawil, S.; Agrawal, A.K.; Wong, W. Performance and Capacity Assessment of Concrete Barriers Subject to Lateral Loading. J. Bridge Eng. 2021, 26, 04021090. [Google Scholar] [CrossRef]
- Mustafa, Y.A.; Murat, E.; Halit, O. Finite element simulation and failure analysis of fixed bollard system according to the PAS 68: 2013 standard. Eng. Fail. Anal. 2022, 135, 106151. [Google Scholar]
- Crawford, J.E. Development of shallow footing anti-ram bollard system through modeling and testing. In Proceedings of the 1st International Conference on Analysis and Design of Structures against Explosive and Impact Loads, Tianjin, China, 15–17 September 2006. [Google Scholar]
- Bangalore, K.P. Protective Bollard Design for High Speed Impact Energy Absorption. Ph.D. Thesis, Bangalore University, Bengaluru, India, 2006. [Google Scholar]
- Dawson, H.; Tennant, D. Inelastic dynamic finite-element design of bollard systems to impact loading. In Proceedings of the Structures Congress 2008: Crossing Borders, Vancouver, BC, Canada, 24–26 April 2008; pp. 1–10. [Google Scholar]
- Noveral, C.J. Investigation of a Hollow Structural Section Connection and Transfer Member for Load Sharing in Anti-Ram Vehicle Barriers. Master’s Thesis, Penn State University, Pennsylvania, PA, USA, 2013. [Google Scholar]
- Hu, B.; Li, G.Q.; Sun, J.Y. Numerical investigation of K4-rating shallow footing fixed anti-ram bollard system subjected to vehicle impact. Int. J. Impact Eng. 2014, 63, 72–87. [Google Scholar] [CrossRef]
- Hu, B.; Li, G.Q. Maximum impact force of truck frontal crashing into anti-ram bollard systems. J. Struct. Eng. 2016, 142, 04016125. [Google Scholar] [CrossRef]
- Hu, B.; Li, G.Q. Modified calculation method for maximum impact force between truck and anti-ram bollard based on Campbell’s model. Eng. Mech. 2017, 34, 79–88. (In Chinese) [Google Scholar]
- Campbell, K.L. Energy basis for collision severity. SAE Trans. 1974, 83, 2114–2126. [Google Scholar]
- National Crash Analysis Center (NCAC). Available online: http://www.ncac.gwu.edu/vml/models.html (accessed on 20 May 2011).
- Mohan, P.; Marzougui, D.; Kan, C.D. Validation of a single unit truck model for roadside hardware impact. Int. J. Veh. Syst. Model. Test. 2006, 2, 1–15. [Google Scholar] [CrossRef]
- Miele, C.R.; Plaxico, C.A.; Kennedy, J.C.; Simunovic, S.; Zis, N. Heavy Vehicle Infrastructure Asset Interaction and Collision; National Transportation Research Center: Knoxville, TN, USA, 2005.
- Mak, K.K.; Menges, W. Testing of State Roadside Safety Systems, Volume VIII: Appendix G–Crash Test and Evaluation of the Single Sloped Bride Rail; Texas Transportation Institute, Texas A&M University, College Station: Canyon, TX, USA, 1996. [Google Scholar]
Designation | K4 | K8 | K12 |
---|---|---|---|
Vehicle weight (kg) | 6800 ± 90 | 6800 ± 90 | 6800 ± 90 |
Impact angle (°) | 90 ± 3 | 90 ± 3 | 90 ± 3 |
Nominal impact velocity (km/h) | 50 | 65 | 80 |
Allowable impact velocity range (km/h) | 45~60 | 60.1~75 | 75~∞ |
Test I [6] | Test II [7] | Test III [8] | Test IV [9] | Test V [10] | ||
---|---|---|---|---|---|---|
Organization Department | Pennsylvania Transportation Institute | KARCO Engineering, LLC | KARCO Engineering, LLC | KARCO Engineering, LLC | KARCO Engineering, LLC | |
Test Designation | K4 | K4 | K8 | K8 | K12 | |
Truck | Vehicle type | Ford F700 | International S1900 | Chevrolet Diesel | Ford F700 | Ford F700 |
Weight (kg) | 6849.0 | 6868.3 | 6731.3 | 6806.6 | 6861.0 | |
Impact velocity (km/h) | 47.6 | 52.0 | 62.1 | 69.3 | 79.3 | |
Bollard | Height (mm) | 1016 | 1016 | 1016 | 1016 | 762 |
Diameter (mm) | 203 | 254 | 254 | 254 | 229 | |
Spacing (mm) | 1164.0 1 | 1371.6 | 1371.6 | 1371.6 | 1473 | |
Steel tube | Strength (MPa) | 345 | 345 | 345 | 345 | 345 |
Thickness (mm) | 16 | 25.4 | 25.4 | 25.4 | N/A 2 | |
Reinforcement | Diameter (mm) | 16 | 16 | 16 | 16 | 16 |
Spacing (mm) | 320 | 300 | 300 | 250 | 250 | |
Distance between bollard center and foundation front edge (mm) | 390 | 430 | 430 | 330 | 320 | |
Foundation | Width (mm) | 1371.6 | 1800.0 | 1800.0 | 1800.0 | 1800.0 |
Depth (mm) | 355.6 | 165 | 165 | 305 | 305 | |
Length (mm) | 6706 | 6858 | 6858 | 6858 | 7366 | |
Footing height (mm) | 250.0 | 127.0 | 127.0 | 203.2 | 101.6 | |
Bollard deflection (mm) | 137 | 83 | 77 | 184 | - | |
Vehicle penetration (m) | −2.76 | −1.60 | <0 | −1.40 | +2.82 |
Concrete | Steel Tube [20] | Merchant Steel [20] | Reinforcement [20] | |||||
---|---|---|---|---|---|---|---|---|
Strain Rate (1/s) | Dynamic Increase Factor | Effective Plastic Strain | Static Yield Stress (MPa) | Effective Plastic Strain | Static Yield Stress (MPa) | Effective Plastic Strain | Static Yield Stress (MPa) | |
Concrete in Foundation and Steel Tube | Surrounding Concrete | |||||||
−3.0 × 104 | 10.8517 | 12.9247 | 0.000 | 345 | 0.000 | 235 | 0.000 | 400 |
−3.0 × 102 | 10.8517 | 12.9247 | 0.020 | 430 | 0.022 | 254 | 0.025 | 452 |
−1.0 × 102 | 7.5241 | 8.9615 | 0.040 | 464 | 0.048 | 268 | 0.049 | 498 |
−3.0 × 101 | 5.0369 | 5.9991 | 0.060 | 484 | 0.078 | 284 | 0.072 | 525 |
−1.0 × 101 | 3.4924 | 4.1596 | 0.080 | 498 | 0.150 | 304 | 0.095 | 545 |
−3.0 | 2.3379 | 2.7845 | 0.100 | 510 | 0.224 | 323 | 0.140 | 572 |
−1.0 | 1.621 | 1.9307 | 0.200 | 550 | 0.320 | 337 | 0.182 | 594 |
−1.0 × 10−1 | 1.4956 | 1.7302 | 0.300 | 570 | 0.374 | 346 | 0.750 | 747 |
−1.0 × 10−2 | 1.3799 | 1.5505 | 0.400 | 572 | ||||
−1.0 × 10−3 | 1.2732 | 1.3895 | ||||||
−1.0 × 10−4 | 1.1747 | 1.2452 | ||||||
−1.0 × 10−5 | 1.0838 | 1.1159 | ||||||
0.0 | 1.0000 | 1.0000 | ||||||
3.0 × 10−5 | 1.0000 | 1.0000 | ||||||
1.0 × 10−4 | 1.0408 | 1.0534 | ||||||
1.0 × 10−3 | 1.1236 | 1.1636 | ||||||
1.0 × 10−2 | 1.2129 | 1.2853 | ||||||
1.0 × 10−1 | 1.3094 | 1.4197 | ||||||
1.0 | 1.4135 | 1.5682 | ||||||
3.0 | 1.4661 | 1.6444 | ||||||
1.0 × 101 | 1.5259 | 1.7322 | ||||||
3.0 × 101 | 1.5826 | 1.8164 | ||||||
1.0 × 102 | 2.3771 | 2.7281 | ||||||
3.0 × 102 | 3.4284 | 3.9347 | ||||||
3.0 × 104 | 3.4284 | 3.9347 |
Dimension | Test I | Test II | Test III | Test IV | Test V | FE Model |
---|---|---|---|---|---|---|
A | 800 | 780 | 825 | 795 | 720 | 822 |
B | 495 | 500 | 500 | 535 | 445 | 500 |
C | 838 | 800 | 745 | 897 | 854 | 800 |
D | 1803 | 3503 | 2392 | 2450 | 2729 | - |
(2481) | (2552) | (2141) | (2432) | (2478) | ||
E | 2070 | 2927 | 2808 | 2010 | 2391 | - |
(1392) | (3878) | (3059) | (2028) | (2642) | ||
F | 1054 | 1878 | 2630 | 2464 | 1190 | - |
(1054) | (1878) | (2630) | (2464) | (1190) | ||
G | 781 | 650 | 815 | 840 | 1060 | 687 |
H | 1702 | N/A | N/A | N/A | N/A | - |
(1619) | (1527) | (1617) | (1507) | (1469) | ||
I | 584 | 590 | 585 | 585 | 590 | 543 |
J | 1029 | 1050 | 1005 | 1000 | 1010 | 1045 |
K | 2337 | 2250 | 2460 | 2445 | 2425 | 2250 |
L | 2007 | 2050 | 2065 | 2035 | 2000 | 2050 |
N | 1816 | 1830 | 1890 | 1855 | 1885 | 1830 |
Material | Constitutive Model | Parameter | Value |
---|---|---|---|
Sand | MAT_SOIL_AND_FOAM | Density (kg/m3) | 1800 |
Shear modulus (MPa) | 63.85 | ||
Bulk modulus (GPa) | 30 | ||
A0 (Pa2) | 3.4 × 109 | ||
A1 (Pa) | 7.03 × 104 | ||
A2 | 0.3 | ||
Steel bucket | MAT_PLASTIC_KINEMATIC | Density (kg/m3) | 7850 |
Young’s modulus (GPa) | 200 | ||
Poisson’s ratio | 0.3 | ||
Yield stress (MPa) | 245 | ||
Bottom soil | MAT_DRUCKER_PRAGER | Density (kg/m3) | 2047 |
Elastic shear modulus (MPa) | 34.48 | ||
Poisson’s ratio | 0.3 | ||
Dilation angle (rad) | 0.581 | ||
Cohesion value (MPa) | 0.069 |
No. | Vehicle Penetration (m) | Bollard Deflection (mm) | ||||
---|---|---|---|---|---|---|
Test | Simulation | Deviation (%) | Test | Simulation | Deviation (%) | |
Test I | −2.76 | −1.97 | 29.7 | 137 | 136 | 0.7 |
Test II | −1.60 | −1.94 | 21.3 | 83 | 86 | 3.6 |
Test III | - | −1.71 | - | 77 | 78 | 1.3 |
Test IV | −1.40 | −1.35 | 3.6 | 184 | 188 | 2.2 |
Test V | 2.82 | 2.56 | 9.2 | - | 454 | - |
Factor | D (mm) | P (mm) | Factor | D (mm) | P (mm) | ||
---|---|---|---|---|---|---|---|
T1 (mm) | 19 | 880 | >+3083 | W1 (mm) | 1500 | 605 | +854 |
22 | 650 | +814 | 1800 | 625 | +620 | ||
25.4 | 625 | +620 | 2100 | 617 | +543 | ||
T2 (mm) | 10 | 981 | >+7333 | D1 (mm) | 200 | 890 | >+5030 |
13 | 625 | +620 | 254 | 625 | +620 | ||
16 | 355 | +328 | 300 | 581 | +512 | ||
H1 (mm) | 900 | 699 | >+4083 | D2 (mm) | 1000 | 348 | +243 |
1016 | 625 | +620 | 1371.6 | 625 | +620 | ||
1100 | 691 | +554 | 1500 | 634 | +901 | ||
H2 (mm) | 250 | 658 | +1002 | S1 (mm) | 30 | 710 | >+4117 |
305 | 625 | +620 | 34.5 | 625 | +620 | ||
350 | 594 | +377 | 40 | 612 | +559 | ||
H3 (mm) | 150 | 1256 | >+1136 | S2 (mm) | 235 | 888 | >+3897 |
203 | 625 | +620 | 345 | 625 | +620 | ||
250 | 277 | −80 | S3 (mm) | 235 | 625 | +620 | |
345 | 279 | −215 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, R.; Heng, K.; Hu, F. Dynamic Behaviors of Optimized K12 Anti-Ram Bollards. Symmetry 2022, 14, 1703. https://doi.org/10.3390/sym14081703
Zhang Y, Li R, Heng K, Hu F. Dynamic Behaviors of Optimized K12 Anti-Ram Bollards. Symmetry. 2022; 14(8):1703. https://doi.org/10.3390/sym14081703
Chicago/Turabian StyleZhang, Yi, Ruiwen Li, Kai Heng, and Feng Hu. 2022. "Dynamic Behaviors of Optimized K12 Anti-Ram Bollards" Symmetry 14, no. 8: 1703. https://doi.org/10.3390/sym14081703
APA StyleZhang, Y., Li, R., Heng, K., & Hu, F. (2022). Dynamic Behaviors of Optimized K12 Anti-Ram Bollards. Symmetry, 14(8), 1703. https://doi.org/10.3390/sym14081703