Stability of Nonlinear Fractional Delay Differential Equations
Abstract
:1. Introduction
2. Preliminaries
- (a)
- (b)
- (a)
- where is the fixed point set of
- (b)
- converges to
3. Ulam Stabilities for Nonlinear Fractional Delay Differential Equations
- (A1)
- and are continuous with the Lipschitz condition:and
- (A2)
- (A3)
- is a positive continuous nondecreasing function and s.t.
4. Applications
5. Examples
6. Conclusions
7. Future Direction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, D.; Lakshmikantham, V.; Liu, X. Nonlinear Integral Equations in Abstract Spaces; Kuwer: Dordrecht, The Netherlands, 1996; p. 373. [Google Scholar]
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Progr. Nonlinear Differential Equations Appl., 34; Springer: Boston, MA, USA; Birkhäuser: Basel, Switzerland, 1998. [Google Scholar]
- Jung, S.M. A fixed point approach to the stability of a Volterra integral equation. Fixed Point Theory Appl. 2007, 2007, 57064. [Google Scholar] [CrossRef] [Green Version]
- Kolmanovskií, V.; Myshkis, A. Applied Theory of Functional-Differential Equations, Math. Appl. (Soviet Ser.); Kluwer: Dordrecht, The Netherlands, 1992; p. 85. [Google Scholar]
- Radu, V. The fixed point alternative and the stability of functional equations. Fixed Point Theory 2003, 4, 91–96. [Google Scholar]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Ulam, S.M. A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics; Interscience: New York, NY, USA; London, UK, 1960; p. 8. [Google Scholar]
- Castro, L.P.; Ramos, A. Hyers–Ulam–Rassias stability for a class of nonlinear Volterra integral equations. Banach J. Math. Anal. 2009, 3, 36–43. [Google Scholar] [CrossRef]
- Bota-Boriceanu, M.F.; Petrusel, A. Ulam-Hyers stability for operatorial equations. An. Stiintifice Ale Univ. 2011, 57, 65–74. [Google Scholar] [CrossRef]
- Petru, T.P.; Petruşel, A.; Yao, J.C. Ulam–Hyers stability for operatorial equations and inclusions via nonself operators. Taiwan. J. Math. 2011, 15, 2195–2212. [Google Scholar] [CrossRef]
- Brzdęk, J.; Eghbali, N. On approximate solutions of some delayed fractional differential equations. Appl. Math. Lett. 2016, 54, 31–35. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y. Hyers-Ulam stability of linear functional differential equations. J. Math. Anal. Appl. 2015, 426, 1192–1200. [Google Scholar] [CrossRef]
- Jan, M.N.; Zaman, G.; Ahmad, I.; Ali, N.; Nisar, K.S.; Abdel-Aty, A.H.; Zakarya, M. Existence Theory to a Class of Fractional Order Hybrid Differential Equations. Fractals 2022, 30, 2240022. [Google Scholar] [CrossRef]
- Li, Y.; Shen, Y. Hyers Ulam stability of linear differential equations of second order. Appl. Math. 2010, 23, 306–309. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Zada, A.; Faisal, S. Hyers Ulam stability of nth order linear differential equations. J. Nonlinear Sci. 2016, 9, 2070–2075. [Google Scholar] [CrossRef]
- Miura, T.; Miyajima, S.; Takahasi, S.E. A characterization of Hyers-Ulam stability of first order linear differential operators. J. Math. Anal. 2003, 286, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Rezapour, S.; Abbas, M.I.; Etemad, S.; Minh, D.N. On a multi-point p p-Laplacian fractional differential equation with generalized fractional derivatives. Math. Methods Appl. Sci. 2022; in press. [Google Scholar]
- Rezapour, S.; Souid, M.S.; Bouazza, Z.; Hussain, A.; Etemad, S. On the fractional variable order thermostat model: Existence theory on cones via piece-wise constant functions. J. Funct. Spaces, 2022; in press. [Google Scholar]
- Saker, S.; Kenawy, M.; AlNemer, G.; Zakarya, M. Some fractional dynamic inequalities of Hardy’s type via conformable calculus. Mathematics 2020, 8, 434. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Zada, A.; Faisal, S.; El-Sheikh, M.M.A.; Li, T. Stability of higher-order nonlinear impulsive differential equations. J. Nonlinear Sci. Appl. 2016, 9, 4713–4721. [Google Scholar] [CrossRef] [Green Version]
- Turab, A.; Mitrović, Z.D.; Savić, A. Existence of solutions for a class of nonlinear boundary value problems on the hexasilinane graph. Adv. Differ. Equ. 2021, 2021, 494. [Google Scholar] [CrossRef]
- Zada, A.; Ali, W.; Farina, S. Hyers Ulam stability of nonlinear differential equations with fractional integrable impulses. Math. Methods 2017, 40, 5502–5514. [Google Scholar] [CrossRef]
- Zada, A.; Faisal, S.; Li, Y. Hyers Ulam Rassias stability of non linear delay differential equations. J. Nonlinear Sci. 2017, 504, 510. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, R.W. Ulam Stability of Boundary Value Problem. J. Math. 2013, 37, 287–297. [Google Scholar]
- Kucche, K.D.; Shikhare, P.U. Ulam Stabilities for Nonlinear Voltera Delay Integro-differential Equations. J. Contemp. Math. Anal. 2019, 54, 276–287. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Srivastava, H.M.; Owa, S. Univalent Functions, Fractional Calculus, and Their Applications; Halsted Press: Sydney, Australia; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisban, Australia; Toronto, ON, Canada, 1989. [Google Scholar]
- Ye, H.; Gao, J.; Ding, Y. A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 2007, 328, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Otrocol, D.; Ilea, V. Ulam stability for a delay differential equation. Cent. Eur. J. Math. 2013, 11, 1296–1303. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Refaai, D.A.; El-Sheikh, M.M.A.; Ismail, G.A.F.; Zakarya, M.; AlNemer, G.; Rezk, H.M. Stability of Nonlinear Fractional Delay Differential Equations. Symmetry 2022, 14, 1606. https://doi.org/10.3390/sym14081606
Refaai DA, El-Sheikh MMA, Ismail GAF, Zakarya M, AlNemer G, Rezk HM. Stability of Nonlinear Fractional Delay Differential Equations. Symmetry. 2022; 14(8):1606. https://doi.org/10.3390/sym14081606
Chicago/Turabian StyleRefaai, D. A., M. M. A. El-Sheikh, Gamal A. F. Ismail, Mohammed Zakarya, Ghada AlNemer, and Haytham M. Rezk. 2022. "Stability of Nonlinear Fractional Delay Differential Equations" Symmetry 14, no. 8: 1606. https://doi.org/10.3390/sym14081606
APA StyleRefaai, D. A., El-Sheikh, M. M. A., Ismail, G. A. F., Zakarya, M., AlNemer, G., & Rezk, H. M. (2022). Stability of Nonlinear Fractional Delay Differential Equations. Symmetry, 14(8), 1606. https://doi.org/10.3390/sym14081606