Generalized Inequalities of Hilbert-Type on Time Scales Nabla Calculus
Abstract
:1. Introduction
2. Preliminaries
- (1)
- (2)
- (3)
3. Main Results
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schur, I. Bernerkungen sur theorie der beschrankten Bilinearformen mit unendlich vielen veranderlichen. J. Math. 1911, 140, 1–28. [Google Scholar]
- Hardy, G.H. Note on a Theorem of Hilbert Concerning Series of Positive Term. Proc. Lond. Math. Soc. 1925, 23, 45–46. [Google Scholar]
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1934. [Google Scholar]
- Pachpatte, B.G. A note on Hilbert type inequality. Tamkang J. Math. 1998, 29, 293–298. [Google Scholar] [CrossRef]
- Pachpatte, B.G. Inequalities Similar to Certain Extensions of Hilbert’s Inequality. J. Math. Anal. Appl. 2000, 243, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Kim, B.I. An Analogue of Hilbert’s inequality and its extensions. Bull. Korean Math. Soc. 2002, 39, 377–388. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.M.; AlNemer, G.; Zakarya, M.; Rezk, H.M. Some dynamic inequalities of Hilbert’s type. J. Funct. Spaces 2020, 2020, 4976050. [Google Scholar] [CrossRef] [Green Version]
- AlNemer, G.; Saied, A.I.; Zakarya, M.; Abd El-Hamid, H.A.; Bazighifan, O.; Rezk, H.M. Some New Reverse Hilbert’s Inequalities on Time Scales. Symmetry 2021, 13, 2431. [Google Scholar] [CrossRef]
- O’Regan, D.; Rezk, H.M.; Saker, S.H. Some dynamic inequalities involving Hilbert and Hardy-Hilbert operators with kernels. Results Math. 2018, 73, 1–22. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001; p. 96. [Google Scholar]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Sandor, J. Inequalities for multiplicative arithmetic functions. arXiv 2011, arXiv:1105.0292,. [Google Scholar]
- Young, W.H. On class of summable functions and there Fourier series. Proc. R. Soc. Lond. A 1912, 87, 225–229. [Google Scholar]
- Ammi, M.R.S.; Ferreira, R.A.; Torres, D.F. Diamond-Jensen’s inequality on time scales. J. Inequal. Appl. 2008, 2008, 576876. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakarya, M.; AlNemer, G.; Saied, A.I.; Butush, R.; Bazighifan, O.; Rezk, H.M. Generalized Inequalities of Hilbert-Type on Time Scales Nabla Calculus. Symmetry 2022, 14, 1512. https://doi.org/10.3390/sym14081512
Zakarya M, AlNemer G, Saied AI, Butush R, Bazighifan O, Rezk HM. Generalized Inequalities of Hilbert-Type on Time Scales Nabla Calculus. Symmetry. 2022; 14(8):1512. https://doi.org/10.3390/sym14081512
Chicago/Turabian StyleZakarya, Mohammed, Ghada AlNemer, Ahmed I. Saied, Roqia Butush, Omar Bazighifan, and Haytham M. Rezk. 2022. "Generalized Inequalities of Hilbert-Type on Time Scales Nabla Calculus" Symmetry 14, no. 8: 1512. https://doi.org/10.3390/sym14081512
APA StyleZakarya, M., AlNemer, G., Saied, A. I., Butush, R., Bazighifan, O., & Rezk, H. M. (2022). Generalized Inequalities of Hilbert-Type on Time Scales Nabla Calculus. Symmetry, 14(8), 1512. https://doi.org/10.3390/sym14081512