Consistency and General Solutions to Some Sylvester-like Quaternion Matrix Equations
Abstract
:1. Introduction
2. Solvability Conditions to the System (1)
3. A Numerical Example of the System (1)
4. Solvability Conditions to the System (2) Involving -Hermicity
5. A Numerical Example to System (2)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, S.W.; He, Z.H.; Qi, T.C.; Wang, X.X. The equivalence canonical form of five quaternion matrices with applications to imaging and Sylvester-type equations. J. Comput. Appl. Math. 2021, 393, 113494. [Google Scholar] [CrossRef]
- Yuan, S.F.; Wang, Q.W. On solutions of the quaternion matrix equation AX=B and their applications in color image restoration. Appl. Math. Comput. 2013, 221, 10–20. [Google Scholar]
- Adler, S.L. Scattering and decay theory for quaternionic quantum mechanics, and the structure of induced Tnonconservation. Phy. Rev. D 1988, 37, 3654–3662. [Google Scholar] [CrossRef] [PubMed]
- Marek, D.; Lucjan, S. Foundations of the Quaternion Quantum Mechanics. Entropy 2020, 22, 1424. [Google Scholar]
- Bihan, N.L.; Mars, J. Singular value decomposition of quaternion matrices: A new tool for vector-sensor signal processing. Signal Process. 2004, 84, 1177–1199. [Google Scholar] [CrossRef]
- He, Z.H. Some quaternion matrix equations involving ϕ-Hermicity. Filomat 2019, 33, 5097–5112. [Google Scholar] [CrossRef] [Green Version]
- He, Z.H.; Liu, J.; Tam, T.Y. The general ϕ-Hermitian solution to mixed pairs of quaternion matrix Sylvester equations. Electron. J. Linear Algebra 2017, 32, 475–499. [Google Scholar] [CrossRef]
- He, Z.H.; Wang, M. Solvability conditions and general solutions to some quaternion matrix equations. Math. Methods Appl. Sci. 2021, 44, 14274–14291. [Google Scholar] [CrossRef]
- He, Z.H.; Wang, Q.W.; Zhang, Y. The complete equivalence canonical form of four matrices over an arbitrary division ring. Linear Multilinear Algebra 2018, 66, 74–95. [Google Scholar] [CrossRef] [Green Version]
- He, Z.H. A system of coupled quaternion matrix equations with seven unknowns and its applications. Adv. Appl. Clifford Algebr. 2019, 29, 38. [Google Scholar] [CrossRef]
- Kyrchei, I. Explicit representation formulas for the minimum norm least squares solutions of some quaternion matrix equations. Linear Algebra Appl. 2018, 438, 136–152. [Google Scholar] [CrossRef] [Green Version]
- Kyrchei, I. Determinantal representations of solutions to systems of quaternion matrix equations. Adv. Appl. Clifford Algebras 2018, 28, 23. [Google Scholar] [CrossRef]
- Kyrchei, I. Cramer’s rules for Sylvester quaternion matrix equation and its special cases. Adv. Appl. Clifford Algebras 2018, 28, 90. [Google Scholar] [CrossRef]
- Kyrchei, I. Cramer’s Rules of η-(skew-)Hermitian solutions to the quaternion Sylvester-type matrix equations. Adv. Appl. Clifford Algebras 2019, 29, 56. [Google Scholar] [CrossRef]
- Liu, L.S.; Wang, Q.W.; Mehany, M.S. A Sylvester-Type Matrix Equation over the Hamilton Quaternions with an Application. Mathematics 2022, 10, 1758. [Google Scholar]
- Liu, X.; Zhang, Y. Consistency of split quaternion matrix equations AX∗ − XB = CY + D and X − AX∗B = CY + D. Adv. Appl. Clifford Algebras 2019, 29, 64. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q.W.; Zhang, Y. Consistency of quaternion matrix equations AX∗ − XB = C and X − AX∗B = C. Electron. J. Linear Algebra 2019, 35, 394–407. [Google Scholar] [CrossRef]
- Mehany, M.S.; Wang, Q.W. Three symmetrical systems of coupled Sylvester-like quaternion matrix equations. Symmetry 2022, 14, 550. [Google Scholar] [CrossRef]
- Rehman, A.; Wang, Q.W. A system of matrix equations with five variables. Appl. Math. Comput. 2015, 271, 805–819. [Google Scholar] [CrossRef]
- Song, C.; Chen, G.; Liu, Q. Explicit solutions to the quaternion matrix equations and . Int. J. Comput. Math. 2012, 89, 890–900. [Google Scholar] [CrossRef]
- Song, G.J.; Wang, Q.W.; Yu, S.W. Cramer’s rule for a system of quaternion matrix equations with applications. Appl. Math. Comput. 2018, 336, 490–499. [Google Scholar] [CrossRef]
- Wang, Q.W. Bisymmetric and centrosymmetric solutions to system of real quaternion matrix equations. Comput. Math. Appl 2005, 49, 641–650. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.W. The general solution to a system of real quaternion matrix equations. Comput. Math. Appl 2005, 49, 665–675. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.W.; van der Woude, J.W.; Chang, H.X. A system of real quaternion matrix equations with applications. Linear Algebra Appl. 2009, 431, 2291–2303. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.W.; He, Z.H. Constrained two-sided coupled Sylvester-type quaternion matrix equations. Automatica 2019, 101, 207–213. [Google Scholar] [CrossRef]
- Wang, Q.W.; Zhang, X.; van der Woude, J.W. A new simultaneous decomposition of a matrix quaternity over an arbitrary division ring with applications. Comm. Algebra 2012, 40, 2309–2342. [Google Scholar] [CrossRef]
- Wang, R.N.; Wang, Q.W.; Zhang, X.; Liu, L.S. Solving a System of Sylvester-like Quaternion Matrix Equations. Symmetry 2022, 14, 1056. [Google Scholar] [CrossRef]
- Xu, Y.F.; Wang, Q.W.; Liu, L.S.; Mehany, M.S. A constrained system of matrix equations. Comput. Appl. Math. 2022, 41, 166. [Google Scholar] [CrossRef]
- Yuan, S.F.; Tian, Y.; Li, M.Z. On Hermitian solutions of the reduced biquaternion matrix equation (AXB,CXD) = (E,G). Linear Multilinear Algebra 2020, 68, 1355–1373. [Google Scholar] [CrossRef]
- Zhang, F.X.; Wei, M.S.; Li, Y.; Zhao, J.L. Special least squares solutions of the quaternion matrix equation AX = B with applications. Appl. Math. Comput 2015, 270, 425–433. [Google Scholar]
- Zhang, Y.; Wang, R.H. The exact solution of a system of quaternion matrix equations involving η-Hermicity. Appl. Math. Comput 2013, 222, 201–209. [Google Scholar] [CrossRef]
- Futorny, V.; Klymchuk, T. Roth’s solvability criteria for the matrix equations and over the skew field of quaternions with an involutive automorphism . Linear Algebra Appl. 2016, 510, 246–258. [Google Scholar] [CrossRef] [Green Version]
- Dmytryshyn, A.; Futorny, V.; Klymchuk, T.; Sergeichuk, V.V. Generalization of Roth’s solvability criteria to systems of matrix equations. Linear Algebra Appl. 2017, 527, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Rodman, L. Topics in Quaternion Linear Algebra; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.-H.; Tian, J.; Zhao, Y.-F.; Yu, S.-W. Consistency and General Solutions to Some Sylvester-like Quaternion Matrix Equations. Symmetry 2022, 14, 1350. https://doi.org/10.3390/sym14071350
He Z-H, Tian J, Zhao Y-F, Yu S-W. Consistency and General Solutions to Some Sylvester-like Quaternion Matrix Equations. Symmetry. 2022; 14(7):1350. https://doi.org/10.3390/sym14071350
Chicago/Turabian StyleHe, Zhuo-Heng, Jie Tian, Yun-Fan Zhao, and Shao-Wen Yu. 2022. "Consistency and General Solutions to Some Sylvester-like Quaternion Matrix Equations" Symmetry 14, no. 7: 1350. https://doi.org/10.3390/sym14071350
APA StyleHe, Z. -H., Tian, J., Zhao, Y. -F., & Yu, S. -W. (2022). Consistency and General Solutions to Some Sylvester-like Quaternion Matrix Equations. Symmetry, 14(7), 1350. https://doi.org/10.3390/sym14071350