Montgomery Identity and Ostrowski-Type Inequalities for Generalized Quantum Calculus through Convexity and Their Applications
Abstract
:1. Introduction
2. Main Results
3. Application to Special Means
- Arithmetic mean
- Generalized logarithmic mean
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus, Universitext; Springer: New York, NY, USA, 2002. [Google Scholar]
- Lupas, A. A q-analogue of the Bernstein operator. In Seminar on Numerical and Statistical Calculus; University of Cluj-Napoca: Cluj-Napoca, Romania, 1987; pp. 85–92. [Google Scholar]
- Phillips, G.M. Bernstein polynomials based on the q-integers. The heritage of P.L. Chebyshev: A Festschrift in honor of the 70th-birthday of Professor T.J. Rivlin. Ann. Numer. Math. 1997, 4, 511–518. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite interval. J. Inequal. Appl. 2014, 121, 13. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 282, 19. [Google Scholar] [CrossRef] [Green Version]
- Jackson, F.H. On a q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Gauchman, H. Integral inequalities in q-calculus. Comput. Math. Appl. 2004, 47, 281–300. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite-Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Du, T.-S.; Wang, H.; Shen, Y.-J. Different types of quantum integral inequalities via (α,m)-convexity. J. Inequal. Appl. 2018, 2018, 264. [Google Scholar] [CrossRef]
- Klasoom, H.; Minhyung, C. Trapezoidal (p,q)-Integral Inequalities Related to (η1,η2)-convex Functions with Applications. Internat. J. Theoret. Phys. 2021, 1–5. [Google Scholar] [CrossRef]
- Khan, M.A.; Mohammad, N.; Nwaeze, E.R.; Chu, Y.-M. Quantum Hermite-Hadamard inequality by means of a Green function. Adv. Differ. Equ. 2020, 2020, 99. [Google Scholar] [CrossRef]
- Liu, W.-J.; Zhang, H.-F. Some quantum estimates of Hermite-Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 2017, 7, 501–522. [Google Scholar]
- Latif, M.A.; Kunt, M.; Dragomir, S.S.; İşcan, İ. Post-quantum trapezoid type inequalities. Aims Math. 2020, 5, 4011–4026. [Google Scholar] [CrossRef]
- Vivas-Cortex, M.J.; Kashuri, A.; Liko, R.; Hernández, J.E. Quantum trapezium-type inequalities using generalized ϕ-convex functions. Axioms 2020, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, R.; Jagannathan, R. A (p,q)–oscillator realization of two-parameter quantum algebras. J. Phys. A 1991, 24, L711. [Google Scholar] [CrossRef]
- Kunt, M.; İscan, İ.; Alp, N.; Sarıkaya, M.Z. (p,q)–Hermite–Hadamard inequalities and (p,q)–estimates for midpoint type inequalities via convex and quasi–convex functions. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mater. 2018, 112, 969–992. [Google Scholar]
- Luo, C.-Y.; Du, T.-S.; Awan, M.U.; Zhang, Y. Estimation-type results with respect to the parameterized (p,q)–integral inequalities. AIMS Math. 2019, 5, 568–586. [Google Scholar] [CrossRef]
- Mursaleen, M.; Ansari, K.J.; Khan, A. Some Approximation Results by (p,q)-analogue of Bernstein–Stancu operators. Appl. Math. Comput. 2015, 264, 392–402. [Google Scholar] [CrossRef]
- Duran, U.; Acikgoz, M.; Esi, A.; Araci, S. A note on the (p,q) Hermite polynomials. Appl. Math. Inf. Sci. 2018, 12, 227–231. [Google Scholar] [CrossRef]
- Tunç, M.; Göv, E. (p,q)–Integral inequalities. RGMIA Res. Rep. Coll. 2016, 19, 97. [Google Scholar]
- Dragomir, S.S.; Rassias, T.M. Ostrowski Type Inequalities and Applications in Numerical Integration; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 2002. [Google Scholar]
- Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Inequalities for Functions and Their Integrals and Derivatives; Kluwer Academic: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Alp, N.; Sarıkaya, M.Z.; Kunt, M.; İşcan, İ. q–Hermite–Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi–convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalsoom, H.; Vivas-Cortez, M.; Abidin, M.Z.; Marwan, M.; Khan, Z.A. Montgomery Identity and Ostrowski-Type Inequalities for Generalized Quantum Calculus through Convexity and Their Applications. Symmetry 2022, 14, 1449. https://doi.org/10.3390/sym14071449
Kalsoom H, Vivas-Cortez M, Abidin MZ, Marwan M, Khan ZA. Montgomery Identity and Ostrowski-Type Inequalities for Generalized Quantum Calculus through Convexity and Their Applications. Symmetry. 2022; 14(7):1449. https://doi.org/10.3390/sym14071449
Chicago/Turabian StyleKalsoom, Humaira, Miguel Vivas-Cortez, Muhammad Zainul Abidin, Muhammad Marwan, and Zareen A. Khan. 2022. "Montgomery Identity and Ostrowski-Type Inequalities for Generalized Quantum Calculus through Convexity and Their Applications" Symmetry 14, no. 7: 1449. https://doi.org/10.3390/sym14071449
APA StyleKalsoom, H., Vivas-Cortez, M., Abidin, M. Z., Marwan, M., & Khan, Z. A. (2022). Montgomery Identity and Ostrowski-Type Inequalities for Generalized Quantum Calculus through Convexity and Their Applications. Symmetry, 14(7), 1449. https://doi.org/10.3390/sym14071449