New Hermite–Hadamard Integral Inequalities for Geometrically Convex Functions via Generalized Weighted Fractional Operator
<p>Plot of the values of the functions obtained from the left-most, middle, and right-most terms in the inequality of Theorem 6.</p> "> Figure 2
<p>A graph of the error and error bound in the inequality of Theorem 7.</p> "> Figure 3
<p>A graph of the error and error bound in the inequality of Theorem 8.</p> "> Figure 4
<p>A graph of the error and error bound in the inequality of Theorem 9.</p> ">
Abstract
:1. Introduction and Preliminaries
2. Weighted Fractional Integral
3. Main Results
- (i)
- Let be an integrable function and geometrically symmetric weighted function with respect to with , and then we havefor every
- (ii)
- For order and ℘ is an increasing and positive function from onto itself
4. Weighted Fractional Hermite–Hadamard-Type Inequalities for Geometrically Convex Functions
- (i)
- If , then inequality (13) becomeswhere and are defined in Remark 1 part(ii).
- (ii)
- (iii)
- (iv)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hermite, C. Sur deux limites d’une intégrale dé finie. Mathesis 1883, 3, 82. [Google Scholar]
- Hadamard, J. Étude sur les propriétés des fonctions entiéres en particulier d’une function considéré par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Hussain, S. Some Hermite-Hadamard type integral inequalities whose n-times differentiable functions are s-logarithmically convex functions. Punjab Univ. J. Math. 2019, 2019, 65–75. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. New inequaities of Hermite-Hadamard’s type. Res. Rep. Collect. 2009, 12, 7. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Sarikaya, M.Z. On generalized fractional integral inequalities for twice differentiable convex functions. J. Comput. Appl. Math. 2020, 372, 112740. [Google Scholar] [CrossRef]
- Kalsoom, H.; Vivas-Cortez, M.; Amer, L.M.; Ahmad, H. Weighted Midpoint Hermite-Hadamard-Fejér Type Inequalities in Fractional Calculus for Harmonically Convex Functions. Fractal Fract. 2021, 5, 252. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Aydi, H.; Kashuri, A.; Hamed, Y.S.; Abualnaja, K.M. Midpoint inequalities in fractional calculus defined using positive weighted symmetry function kernels. Symmetry 2021, 13, 550. [Google Scholar] [CrossRef]
- Kalsoom, H.; Latif, M.A.; Khan, Z.A.; Vivas-Cortez, M. Some New Hermite-Hadamard-Fejér Fractional Type Inequalities for h-Convex and Harmonically h-Convex Interval-Valued Functions. Mathematics 2021, 10, 74. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yildirim, H. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2017, 17, 1049–1059. [Google Scholar] [CrossRef]
- İşcan, İ. Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals. Stud. Univ. Babes Bolyai Math. 2015, 60, 355–366. [Google Scholar]
- İşcan, İ. On generalization of different type integral inequalities for s-convex functions via fractional integrals. Math. Sci. Appl. E-Notes 2014, 2, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Khan, Z.A. Hermite-Hadamard-Fejér Type Inequalities with Generalized K-Fractional Conformable Integrals and Their Applications. Mathematics 2022, 10, 483. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Shah, K. On the weighted fractional operators of a function with respect to another function. Fractals 2020, 28, 12. [Google Scholar] [CrossRef]
- Kalsoom, H.; Budak, H.; Kara, H.; Ali, M.A. Some new parameterized inequalities for co-ordinated convex functions involving generalized fractional integrals. Open Math. 2021, 19, 1153–1186. [Google Scholar] [CrossRef]
- Niculescu, C.P. Convexity according to the geometric mean. Math. Inequal. Appl. 2000, 3, 155–167. [Google Scholar]
- Dragomir, S.S.; Latif, M.A.; Momoniat, E. Fejér type integral inequalities related with geometrically-arithmetically convex functions with applications. Acta Comment. Univ. Tartu. Math. 2019, 23, 51–64. [Google Scholar] [CrossRef] [Green Version]
- İşcan, İ. New general integral inequalities for quasi-geometrically convex functions via fractional integrals. J. Inequalities Appl. 2013, 2013, 491. [Google Scholar] [CrossRef] [Green Version]
- Kunt, M.; İşcan, İ. Fractional Hermite–Hadamard–Fejér type inequalities for GA-convex functions. Turk. J. Inequal 2018, 2, 1–20. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalsoom, H.; Latif, M.A.; Khan, Z.A.; Al-Moneef, A.A. New Hermite–Hadamard Integral Inequalities for Geometrically Convex Functions via Generalized Weighted Fractional Operator. Symmetry 2022, 14, 1440. https://doi.org/10.3390/sym14071440
Kalsoom H, Latif MA, Khan ZA, Al-Moneef AA. New Hermite–Hadamard Integral Inequalities for Geometrically Convex Functions via Generalized Weighted Fractional Operator. Symmetry. 2022; 14(7):1440. https://doi.org/10.3390/sym14071440
Chicago/Turabian StyleKalsoom, Humaira, Muhammad Amer Latif, Zareen A. Khan, and Areej A. Al-Moneef. 2022. "New Hermite–Hadamard Integral Inequalities for Geometrically Convex Functions via Generalized Weighted Fractional Operator" Symmetry 14, no. 7: 1440. https://doi.org/10.3390/sym14071440
APA StyleKalsoom, H., Latif, M. A., Khan, Z. A., & Al-Moneef, A. A. (2022). New Hermite–Hadamard Integral Inequalities for Geometrically Convex Functions via Generalized Weighted Fractional Operator. Symmetry, 14(7), 1440. https://doi.org/10.3390/sym14071440