A Complementary Split-Ring Resonator (CSRR)-Based 2D Displacement Sensor
<p>(<b>a</b>) Schematic of CSRR structure and its (<b>b</b>) equivalent circuit model.</p> "> Figure 2
<p>Schematic of the 1D displacement sensor based on CSRR structure.</p> "> Figure 3
<p>Simulated results of the 1D displacement sensor with different values of <span class="html-italic">g</span>.</p> "> Figure 4
<p>Simulated results of the 1D displacement sensor with different triangle base lengths.</p> "> Figure 5
<p>Schematic of 2D displacement sensor: (<b>a</b>) top view and (<b>b</b>) bottom view.</p> "> Figure 6
<p>The influence of the mover in the two-dimensional direction on the CSRR slit.</p> "> Figure 7
<p>Sensor measurement error caused by direction-finding displacement.</p> "> Figure 8
<p>Schematic diagram of the improved CSRR.</p> "> Figure 9
<p>Flow chart of particle swarm optimization device parameters.</p> "> Figure 10
<p>Simulated sensor response with (<b>a</b>) vertical displacement, and (<b>b</b>) horizontal displacement.</p> "> Figure 11
<p>(<b>a</b>) The linear relationship between y displacement and 1st resonant frequency. (<b>b</b>) The linear relationship between x displacement and 2nd resonant frequency.</p> "> Figure 12
<p>CSRR 2D sensor prototype.</p> "> Figure 13
<p>Sensor Test System.</p> "> Figure 14
<p>Measured sensor response with (<b>a</b>) vertical displacement and (<b>b</b>) horizontal displacement.</p> ">
Abstract
:1. Introduction
2. CSRR-Based Displacement Sensor
2.1. 1D Displacement Sensor
2.2. 2D Displacement Sensor
3. Numerical Optimization
4. Experimental Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muñoz-Enano, J.; Vélez, P.; Gil, M.; Martín, F. Planar microwave resonant sensors: A review and recent development. Appl. Sci. J. 2020, 10, 2615. [Google Scholar] [CrossRef]
- Zarifi, M.H.; Daneshmand, M. Wide dynamic range microwave planar coupled ring resonator for sensing applications. Appl. Phys. Lett. 2016, 108, 232906. [Google Scholar] [CrossRef]
- Herrojo, C.; Paredes, F.; Martín, F. 3D-printed all-dielectric electromagnetic encoders with synchronous reading for measuring displacements and velocities. Sensors 2020, 20, 4837. [Google Scholar] [CrossRef] [PubMed]
- Herrojo, C.; Muela, F.J.; Mata-Contreras, J.; Paredes, F.; Martin, F. High-Density Microwave Encoders for Motion Control and Near-Field Chipless-RFID. IEEE Sens. J. 2019, 19, 3673–3682. [Google Scholar] [CrossRef]
- Herrojo, C.; Paredes, F.; Bonache, J.; Martin, F. 3-D-printed high data-density electromagnetic encoders based on permittivity contrast for motion control and chipless-RFID. IEEE Trans. Microw. Theory Tech. 2020, 68, 1839–1850. [Google Scholar] [CrossRef]
- Wiltshire, B.D.; Benjamin, D.; Zarifi, M.H. 3-D printing microfluidic channels with embedded planar microwave resonators for RFID and liquid detection. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 65–67. [Google Scholar] [CrossRef]
- Wang, S.X.; Zhang, D.; Wu, Y.; Liu, Q.; Zhou, D.F.; Zhang, Y. Guided-mode field analysis of SIW resonator with different boundary conditions and its applications. Acta Electron. Sin. 2017, 45, 2540–2548. [Google Scholar]
- Nguyen, T.; Tseng, C. A new microwave humidity sensor with near-filed self-injection-locked technology. IEEE Sens. J. 2021, 21, 21520–21528. [Google Scholar] [CrossRef]
- Mohammadi, S.; Nadaraja, A.V.; Luckasavitch, K.; Jain, M.C.; Roberts, D.J.; Zarifi, M.H. A label-free, non-intrusive, and rapid monitoring of bacterial growth on solid medium using microwave biosensor. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Govind, G.; Akhtar, M.J. Metamaterial-Inspired Microwave Microfluidic Sensor for Glucose Monitoring in Aqueous Solutions. IEEE Sens. J. 2019, 19, 11900–11907. [Google Scholar] [CrossRef]
- Zarifi, M.H.; Deif, S.; Abdolrazzaghi, M.; Chen, B.; Ramsawak, D.; Amyotte, M.; Vahabisani, N.; Hashisho, Z.; Chen, W.; Daneshmand, M. A microwave ring resonator sensor for early detection of breaches in pipeline coatings. IEEE Trans. Ind. Electron. 2018, 65, 1626–1635. [Google Scholar] [CrossRef]
- Smith, D.; Padilla, W.; Vier, D.; Nemat-Nasser, S.; Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000, 84, 4184–4187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcone, F.; Lopetegi, T.; Baena, J.D. Effective negative-/spl epsiv/stopband microstrip lines based on complementary split ring resonators. IEEE Microw. Wirel. Compon. Lett. 2004, 14, 280–282. [Google Scholar] [CrossRef]
- Saadat-Safa, M.; Nayyeri, V.; Khanjarian, M.; Soleimani, M.; Ramahi, O.M. A CSRR-based sensor for full characterization of magneto-dielectric materials. IEEE Trans. Microw. Theory Tech. 2019, 67, 806–814. [Google Scholar] [CrossRef]
- Vélez, P.; Su, L.; Grenier, K.; Mata-Contreras, J.; Dubuc, D.; Martín, F. Microwave microfluidic sensor based on a microstrip splitter/combiner configuration and split ring resonators (SRR) for dielectric characterization of liquids. IEEE Sens. J. 2017, 17, 6589–6598. [Google Scholar] [CrossRef] [Green Version]
- Mondal, D.; Tiwari, N.K.; Akhtar, M.J. Microwave assisted non-invasive microfluidic biosensor for monitoring glucose concentration. In 2018 IEEE Sensors; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Horestani, A.K.; Fumeaux, C.; Al-Sarawi, S.F.; Abbott, D. Displacement sensor based on diamond-shaped tapered split ring resonator. IEEE Sens. J. 2013, 13, 1153–1160. [Google Scholar] [CrossRef]
- Horestani, A.K.; Naqui, J.; Abbott, D.; Fumeaux, C.; Martín, F. Two-dimensional displacement and alignment sensor based on reflection coefficients of open microstrip lines loaded with split ring resonators. Electron. Lett. 2014, 50, 620–622. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Wu, B.; Zhao, Y.T.; Chen, L.; Wu, M.S. Frequency selective surface based two-dimensional displacement sensor with high sensitivity. In Proceedings of the 2019 International Applied Computational Electromagnetics Society Symposium (ACES), Nanjing, China, 8–11 August 2019. [Google Scholar]
- Joodaki, M.; Rezaee, M. Coplanar waveguide (CPW) loaded with an electromagnetic bandgap (EBG) structure: Modeling and application to displacement sensor. IEEE Sens. J. 2016, 16, 3034–3040. [Google Scholar] [CrossRef]
- Horestani, A.K.; Naqui, J.; Shaterian, Z.; Abbott, D.; Fumeaux, C.; Martín, F. Two-dimensional alignment and displacement sensor based on movable broadside-coupled split ring resonators. Sens. Actuators A Phys. 2014, 210, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Bahar, A.A.M.; Zakaria, Z.; Ab Rashid, S.R.; Isa, A.A.M.; Alahnomi, R.A. High-Efficiency microwave planar resonator sensor based on bridge split ring topology. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 545–547. [Google Scholar] [CrossRef]
The Serial Number | X-Direction Displacement (mm) | Y-Direction Displacement (mm) |
---|---|---|
a | 0 | 0 |
b | 1 | 0 |
c | 2 | 0 |
d | 0 | 1 |
d | 0 | 2 |
Parameters | wx (mm) | hx (mm) | deltax (mm) | wy (mm) | hy (mm) | deltay (mm) |
---|---|---|---|---|---|---|
0.4 | 1.1445 | 3.4863 | 0.27 | 0.5487 | 1.8077 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, K.; Zhu, P.; Sun, T.; Wang, J.; Wang, D.; Liu, J.; Zhao, W. A Complementary Split-Ring Resonator (CSRR)-Based 2D Displacement Sensor. Symmetry 2022, 14, 1116. https://doi.org/10.3390/sym14061116
Ren K, Zhu P, Sun T, Wang J, Wang D, Liu J, Zhao W. A Complementary Split-Ring Resonator (CSRR)-Based 2D Displacement Sensor. Symmetry. 2022; 14(6):1116. https://doi.org/10.3390/sym14061116
Chicago/Turabian StyleRen, Kun, Pengwen Zhu, Taotao Sun, Junchao Wang, Dawei Wang, Jun Liu, and Wensheng Zhao. 2022. "A Complementary Split-Ring Resonator (CSRR)-Based 2D Displacement Sensor" Symmetry 14, no. 6: 1116. https://doi.org/10.3390/sym14061116
APA StyleRen, K., Zhu, P., Sun, T., Wang, J., Wang, D., Liu, J., & Zhao, W. (2022). A Complementary Split-Ring Resonator (CSRR)-Based 2D Displacement Sensor. Symmetry, 14(6), 1116. https://doi.org/10.3390/sym14061116