[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Next Article in Journal
Some New Quantum Hermite-Hadamard Type Inequalities for s-Convex Functions
Previous Article in Journal
Another Method for Proving Certain Reduction Formulas for the Humbert Function ψ2 Due to Brychkov et al. with an Application
Previous Article in Special Issue
Non-Separable Linear Canonical Wavelet Transform
You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Unified Integrals of Generalized Mittag–Leffler Functions and Their Graphical Numerical Investigation

1
Department of Applied Mathematics, Aligarh Muslim University, Aligarh 202002, India
2
Department of General Requirements, University of Technology and Applied Sciences-Sur, Muscat 133, Oman
3
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
4
Department of Scientific Basic Sciences, Faculty of Engineering Technology, Al-Balqa Applied University, Amman 11134, Jordan
*
Author to whom correspondence should be addressed.
Symmetry 2022, 14(5), 869; https://doi.org/10.3390/sym14050869
Submission received: 15 March 2022 / Revised: 3 April 2022 / Accepted: 14 April 2022 / Published: 23 April 2022
(This article belongs to the Special Issue Integral Transformation, Operational Calculus and Their Applications)
Figure 1
<p>Solution of (<a href="#FD14-symmetry-14-00869" class="html-disp-formula">14</a>) for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> ">
Figure 2
<p>Solution of (<a href="#FD15-symmetry-14-00869" class="html-disp-formula">15</a>) (for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>) for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>v</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p> ">
Figure 3
<p>Solution of (<a href="#FD15-symmetry-14-00869" class="html-disp-formula">15</a>) (for all <span class="html-italic">q</span>) for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>v</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p> ">
Versions Notes

Abstract

:
In this article, we obtain certain finite integrals concerning generalized Mittag–Leffler functions, which are evaluated in terms of the generalized Fox–Wright function. The integrals of concern are unified in nature and thereby yield some new integral formulas as special cases. Moreover, we numerically compute some integrals using the Gaussian quadrature formula and draw a comparison with the main integrals by using graphical numerical investigation.

1. Introduction

In mathematics, functions and symmetric functions are very common in theory and applications. They have been applied to various fields including group theory, Lie algebras, and algebraic geometry, to mention but a few. In applied mathematics, many functions are defined via integrals or series (or infinite products), which are usually referred to as special functions [1,2,3,4,5,6]. One of them is the Mittag–Leffler function, which was introduced in connection with a method of summation of some divergent series. The Mittag–Leffler function has recently received the interest of scientists due to its wide applications in pure as well as applied mathematics. It is noted that the importance of the Mittag–Leffler function has been envisaged during the last two decades due to its entanglement in physics, chemistry, biology, engineering and applied sciences. The Mittag–Leffler function naturally occurs as a solution of fractional order differential equations or fractional order integral equations. Problems of physics and applied mathematics involve a notable numerical implementation of the Mittag-Leffler function in general and modified forms; therefore, it remains an engaging object of applied research. The implementation of Mittag-Leffler functions is required in a wide variety of problems of physics and mathematics. Because of their crucial requirement, many research works have been dedicated to them, and various representations and generalizations of Mittag-Leffler functions can be found in the literature. Among the most popular special function of fractional calculus is the simplest p Ψ q function and p = 0, q = 1, called the Wright function or the Bessel–Maitland function or the Wright–Bessel function. From this point of view, the Mittag–Leffler function, expressible in terms of the Fox–Right function, is a special function of fractional calculus. Therefore the Mittag–Leffler function is called the queen function of fractional calculus. The results obtained in the manuscript, connected with a generalized Mittag=−Leffler function that will be used to solve a variety of problems of fractional calculus, for example, Riemann-–Liouville fractional integrals and derivatives, Laplace and Sumudu fractional and integral derivatives and Marichev–Saigo–Maeda fractional integrals and derivatives, etc. Recently, fractional calculus associated with some special functions has proved itself to be a useful tool for applications in many fields of research such as physical systems, biomedicine, nonlinear electronic circuits, chaos-based cryptography, and image encryption. Examples of systems that can be precisely described by fractional-order differential equations (FODEs) involve viscoelastic material models, electrical components, electronic circuits, diffusion waves, the propagation of waves in non-local elastic continua, hydro-logic systems, earthquakes’ nonlinear oscillations, models of world economies, fractional viscoelastic models and continuous random walk and equations of muscular blood vessels (see [7,8,9,10,11,12]). In the past few years, several integral formulas having a variety of special functions have been achieved by many authors (see [13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]). The present paper provides the study of finite integrals of the generalized Mittag-Leffler function and investigates some useful formulas. We have computed many new results involving integral transforms of the Mittag–Leffler function and plotted three graphs as the major novelty of our work. The results derived in this paper are of general character and likely to find certain applications in the theory of special functions. Additionally, the results provide unification and extension of known results given earlier by various researchers. We compare the results of analytically evaluated integrals with integrals evaluated numerically using the Gaussian quadrature formula. We conclude that the results obtained will provide a significant step in the theory of integral formulas and can yield some potential applications in the field of classical and applied mathematics. Motivated by the aforementioned research and success of the application of integral formulas, we evaluate a new type of integral formulas involving the generalized Mittag–Leffler function (GMLF) expressed in terms of the Fox–Wright function. The Mittag–Leffler function [31,32] is defined as
E σ ( w ) = n = 0 w n Γ ( σ n + 1 ) , σ C , R e ( σ ) > 0
where ω ia a complex variable and Γ ( . ) is the gamma function [25].
In 1905, A. Wiman [33] established a generalization of E σ ( w ) , as follows:
E σ , μ ( w ) = n = 0 w n Γ ( σ n + μ ) , ( σ , μ C , R e ( μ ) > 0 , R e ( σ ) > 0 ) .
In 1971, Prabhakar [23] came up with a further generalization of E σ , μ ( w ) in the form
E σ , μ γ ( w ) = n = 0 ( γ ) n Γ ( σ n + μ ) w n n ! ( γ , μ , σ C , R e ( σ ) > 0 , R e ( γ ) > 0 , R e ( μ ) > 0 ) ,
where ( γ ) n is known as the Pochhammer symbol [25]. The underlying generalization of the Mittag–Leffler function is given by Shukla and Prajapati (2007) [29] as
E σ , μ γ , b ( w ) = n = 0 ( γ ) b n Γ ( σ n + μ ) w n n !
and expressed by Salim (2009) [26] in the form
E σ , μ γ , δ ( w ) = n = 0 ( γ ) n w n Γ ( σ n + μ ) ( δ ) n .
A certain further generalization of the Mittag–Leffler function was given by Salim and Faraj (2012) [27] as
E σ , μ , a γ , δ , b ( w ) = n = 0 ( γ ) b n w n Γ ( σ n + μ ) ( δ ) a n .
On the other hand, Khan and Ahmad introduced a new generalization of the Mittag–Leffler function (2013) [34] as
E σ , μ , δ γ , b ( w ) = n = 0 ( γ ) b n w n Γ ( σ n + μ ) ( δ ) n ,
where σ , μ , γ , δ C ; R e ( σ ) > 0 , R e ( μ ) > 0 , R e ( γ ) > 0 , R e ( δ ) > 0 ; b ( 0 , 1 ) N .
Consequently, they have introduced a generalization of (7) in the following form [34]
E σ , μ , ν , ϕ , δ , a ξ , λ , γ , b ( w ) = n = 0 ( ξ ) λ n ( γ ) b n w n Γ ( σ n + μ ) ( ν ) ϕ n ( δ ) a n ,
where σ , μ , ν , ϕ , δ , ξ , λ , γ C ; min R e ( σ ) , R e ( μ ) , R e ( ν ) , R e ( ϕ ) , R e ( δ ) , R e ( ξ ) , R e ( λ ) , R e ( γ ) > 0 ; a , b > 0 , b R e ( σ ) + a .
Above all, (8) is the most generalized definition of all the above formalizations introduced in (1)–(7). Upon substituting ξ = ν , λ = ϕ and a = 1 in (8), it becomes (7), which has been established by Khan and Ahmad (2013) [34]. Upon substituting ξ = ν and λ = ϕ , in (8), it becomes a special case (6), which has been established by Salim and Faraj (2012) [27]. Upon substituting ξ = ν , λ = ϕ and b = a = 1 in (8), it becomes (5), which has been discussed by Salim (2009) [26]. Upon substituting ξ = ν , λ = ϕ and δ = a = 1 in equation (8), it is a special case (4); see Shukla and Prajapati (2007) [29]. If b = 1 , it becomes a special case (3) of Prabhakar (1971) [23]. On substituting ξ = ν , λ = ϕ and γ = δ = a = b = 1 in (8), it becomes a special case (2) established by A. Wiman (1905) [33]. Furthermore, if μ = 1 , we get the Mittag–Leffler function E σ ( w ) defined in (1). Finally, on setting δ = a = b = 1 in (8), we establish a new generalization of the Mittag–Leffler function in the form
E σ , μ , ν , ϕ ξ , λ , γ ( w ) = n = 0 ( ξ ) λ n ( γ ) n Γ ( σ n + μ ) ( ν ) ϕ n w n n ! ,
where σ , μ , ν , ϕ , ξ , λ , γ C ; R e ( μ ) > 0 , R e ( σ ) > 0 , R e ( ν ) > 0 , R e ( ϕ ) > 0 , R e ( ξ ) > 0 , R e ( λ ) > 0 a n d R e ( γ ) > 0 .
The Fox–Wright function r Ψ s [ w ] (see [35,36,37,38,39,40,41,42]), is defined by
r Ψ s [ w ] = r Ψ s ( λ 1 , λ ´ 1 ) , , ( λ r , λ ´ r ) ; ( l 1 , l ´ 1 ) , , ( l s , l ´ s ) ; w
= k = 0 Γ ( λ 1 + λ ´ 1 k ) , , Γ ( λ r + λ ´ r k ) Γ ( l 1 + l ´ 1 k ) , , Γ ( l s + l ´ s k ) w k k !
= H r , s + 1 1 , r w | ( 1 λ 1 , λ 1 ´ ) , , ( 1 λ r , λ r ´ ) ( 0 , 1 ) , ( 1 l 1 , l 1 ´ ) , , ( 1 l s , l s ´ ) ,
where H r , s + 1 1 , r [ w ] represents the Fox-H function [38]. When λ 1 ´ , , λ r ´ = 1 , l 1 ´ , , l s ´ = 1 in (10), the Fox–Wright function reduces to the generalized hypergeometric function r F s [w] (see [41])
r Ψ s ( λ 1 , 1 ) , , ( λ r , 1 ) ; ( l 1 , 1 ) , , ( l s , 1 ) ; w = Γ ( λ ) 1 , , Γ ( λ ) r Γ ( l ) 1 , , Γ ( l ) s r F s ( λ 1 , , λ r ; l 1 , , l s ; w ) .
Here, we recall the result due to Prudnikov et al. [24] (see also [39], p. 250 (2.8)), by means of which we have established our main result in the present article
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β d x = Γ ( α ) Γ ( β ) Γ ( α + β ) ( q p ) 1 ( 1 + r 1 ) α ( 1 + r 2 ) β ,
provided that R e ( α ) > 0 , R e ( β ) > 0 , q p and the constants r 1 and r 2 are such that none of the expression 1 + r 1 , 1 + r 2 , ( q p ) + r 1 ( x p ) + r 2 ( q x ) , where p x q is zero.

2. Main Results

Theorem 1.
Let α and β exist such that R e ( α ) > 0 , R e ( β ) > 0 , q p and the constants r 1 and r 2 are such that none of the expressions 1 + r 1 , 1 + r 2 , ( q p ) + r 1 ( x p ) + r 2 ( q x ) , where p x q is zero. Let σ , μ , ν , ϕ , δ , ξ , λ , γ C ; if min { R e ( σ ) , R e ( μ ) , R e ( ν ) , R e ( ϕ ) , R e ( δ ) , R e ( ξ ) , R e ( λ ) , R e ( γ ) } > 0 ; a , b > 0 , b R e ( σ ) + a , then the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β E σ , μ , ν , ϕ , δ , a ξ , λ , γ , b w ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m d x = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β Γ ( ν ) Γ ( δ ) Γ ( ξ ) Γ ( γ ) × 5 Ψ 4 ( ξ , λ ) , ( γ , b ) , ( α , m ) , ( β , m ) , ( 1 , 1 ) ; ( μ , σ ) , ( ν , ϕ ) , ( δ , a ) , ( α + β , 2 m ) ; w ( 1 + r 1 ) m ( 1 + r 2 ) m ,
where E σ , μ , ν , ϕ , δ , a ξ , λ , γ , b ( w ) is a GMLF given by (8).
Proof. 
Denoting the left hand side of (15) by I, writing E σ , μ , ν , ϕ , δ , a ξ , λ , γ , b ( w ) in its summation formula in the integrand with the help of (8), we obtain
I = p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β × n = 0 ( ξ ) λ n ( γ ) b n ( 1 ) n w n ( x p ) m n ( q x ) m n Γ ( σ n + μ ) ( ν ) ϕ n ( δ ) a n [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m n n ! d x ,
which, by further simplification, yields
I = n = 0 ( ξ ) λ n ( γ ) b n Γ ( σ n + μ ) ( ν ) ϕ n ( δ ) a n w n n ! p q ( x p ) m n + α 1 ( q x ) m n + β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) 2 m n + α + β d x .
We apply the result of (14), and, through simplifying, this yields
I = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β Γ ( ν ) Γ ( δ ) Γ ( ξ ) Γ ( γ ) × n = 0 Γ ( ξ + λ n ) Γ ( γ + b n ) Γ ( α + m n ) Γ ( β + m n ) Γ ( 1 + n ) w ( 1 + r 1 ) m ( 1 + r 2 ) m n Γ ( μ + σ n ) Γ ( ν + λ n ) Γ ( δ + a n ) Γ ( α + β + 2 m n ) n ! .
Finally, after summing up, with the help of (11), we arrive at (15). This completes the proof of Theorem 1. □
Corollary 1.
For b = δ = a = 1 and all the conditions already stated in (15), the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β E σ , μ , ν , ϕ ξ , λ , γ w ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m d x = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β Γ ( ν ) Γ ( ξ ) Γ ( γ ) × 4 Ψ 3 ( ξ , λ ) , ( γ , 1 ) , ( α , m ) , ( β , m ) ; ( μ , σ ) , ( ν , ϕ ) , ( α + β , 2 m ) ; w ( 1 + r 1 ) m ( 1 + r 2 ) m .
Theorem 2.
Let α and β be such that R e ( α ) > 0 , R e ( β ) > 0 , q p and the constants r 1 and r 2 are such that none of the expressions 1 + r 1 , 1 + r 2 , ( q p ) + r 1 ( x p ) + r 2 ( q x ) , where p x q is zero. Let σ , μ , ν , ϕ , δ , ξ , λ , γ C ; if min { R e ( σ ) , R e ( μ ) , R e ( ν ) , R e ( ϕ ) , R e ( δ ) , R e ( ξ ) , R e ( λ ) , R e ( γ ) } > 0 ; a , b > 0 , b R e ( σ ) + a , the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β E σ , μ , ν , ϕ , δ , a ξ , λ , γ , b ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m w d x = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 1 ) β Γ ( α ) Γ ( β ) Γ ( α + β ) Γ ( μ ) 2 m + λ + b + 1 F 2 m + σ + ϕ + a Δ ( m ; α ) , Δ ( m ; β ) , Δ ( λ ; ξ ) , Δ ( σ ; μ ) , Δ ( ϕ ; ν ) , Δ ( a ; δ ) , Δ ( b ; γ ) , 1 ; Δ ( 2 m ; α + β ) ; w λ λ b b σ σ ϕ ϕ a a 4 m ( 1 + r 1 ) m ( 1 + r 2 ) m ,
where Δ ( m ; λ ) abbreviates the arrangement of m parameters λ m λ + 1 m λ + m 1 m and m 1 .
Proof. 
By using the formulas
Γ ( λ + n ) = Γ ( λ ) ( λ ) n
and
( λ ) m n = m m n λ m n λ + 1 m n λ + m 1 m n ,
and after a little simplification, the required result (20) can be obtained. Therefore, we omit the proof. □
Corollary 2.
On putting a = b = δ = 1 under the condition already set out in (20), the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β E σ , μ , ν , ϕ ξ , λ , γ w ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m d x = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β Γ ( α ) Γ ( β ) Γ ( α + β ) Γ ( μ ) × 2 m + λ + 1 F 2 m + σ + ϕ Δ ( m ; α ) , Δ ( m ; β ) , Δ ( λ ; ξ ) , Δ ( σ ; μ ) , Δ ( ϕ ; ν ) , γ ; Δ ( 2 m ; α + β ) ; w λ λ σ σ ϕ ϕ 4 m ( 1 + r 1 ) m ( 1 + r 2 ) m .

3. Special Cases

Here, we compute certain integral formulas as special cases of our key results.
(i)
On setting ξ = ν , λ = ϕ in (15), the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β E σ , μ , a γ , δ , b w ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m d x = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β Γ ( δ ) Γ ( γ ) × 4 Ψ 3 ( γ , b ) , ( α , m ) , ( β , m ) ( 1 , 1 ) ; ( μ , σ ) , ( δ , a ) , ( α + β , 2 m ) ; w ( 1 + r 1 ) m ( 1 + r 2 ) m ;
(ii)
Setting ξ = ν , λ = ϕ and a = 1 in (15), the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β E σ , μ , δ γ , b w ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) + ] 2 m d x = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β Γ ( δ ) Γ ( γ ) × 4 Ψ 3 ( γ , b ) , ( α , m ) , ( β , m ) ( 1 , 1 ) ; ( μ , σ ) , ( δ , 1 ) , ( α + β , 2 m ) ; w ( 1 + r 1 ) m ( 1 + r 2 ) m ;
(iii)
Setting ξ = ν , λ = ϕ and a = b = 1 in (15), the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β E σ , μ γ , δ w ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m d x = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β Γ ( δ ) Γ ( γ ) × 4 Ψ 3 ( γ , 1 ) , ( α , m ) , ( β , m ) ( 1 , 1 ) ; ( μ , σ ) , ( δ , 1 ) , ( α + β , 2 m ) ; w ( 1 + r 1 ) m ( 1 + r 2 ) m ;
(iv)
Setting ξ = ν , λ = ϕ and a = δ = 1 in (15), the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β E σ , μ γ , b w ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m d x = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β 1 Γ ( γ ) × 3 Ψ 2 ( γ , b ) , ( α , m ) , ( β , m ) ; ( μ , σ ) , ( α + β , 2 m ) ; w ( 1 + r 1 ) m ( 1 + r 2 ) m ;
(v)
Setting ξ = ν , λ = ϕ and a = b = δ = 1 in (15), the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β E σ , μ γ w ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m d x = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β 1 Γ ( γ ) × 3 Ψ 2 ( γ , 1 ) , ( α , m ) , ( β , m ) ; ( μ , σ ) , ( α + β , 2 m ) ; w ( 1 + r 1 ) m ( 1 + r 2 ) m ;
(vi)
Setting ξ = ν , λ = ϕ and a = b = γ = δ = 1 in (15), the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β E σ , μ w ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m d x = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β × 3 Ψ 2 ( α , m ) , ( β , m ) , ( 1 , 1 ) ; ( μ , σ ) , ( α + β , 2 m ) ; w ( 1 + r 1 ) m ( 1 + r 2 ) m ;
(vii)
Setting ξ = ν , λ = ϕ and a = b = γ = δ = μ = 1 in (15), the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β E σ w ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m d x = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β × 3 Ψ 2 ( α , m ) , ( β , m ) , ( 1 , 1 ) ; ( 1 , σ ) , ( α + β , 2 m ) ; w ( 1 + r 1 ) m ( 1 + r 2 ) m ;
(viii)
Setting ξ = ν , λ = ϕ and a = b = γ = δ = μ = σ = 1 in (15), the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β e w ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m d x = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β × 2 Ψ 1 ( α , m ) , ( β , m ) , ( α + β , 2 m ) ; w ( 1 + r 1 ) m ( 1 + r 2 ) m ;
(ix)
Setting ξ = ν , λ = ϕ and a = b = γ = δ = μ = 1 , σ = 0 in (15), the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β 1 1 w ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m d x = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β × 3 Ψ 2 ( α , m ) , ( β , m ) , ( 1 , 1 ) ; ( 1 , 0 ) , ( α + β , 2 m ) ; w ( 1 + r 1 ) m ( 1 + r 2 ) m ;
(x)
Setting ξ = ν , λ = ϕ in (20), the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β E σ , μ , a γ , δ , b w ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m d x = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β Γ ( α ) Γ ( β ) Γ ( α + β ) Γ ( μ ) × 2 m + b + 1 F 2 m + σ + a Δ ( m ; α ) , Δ ( m ; β ) , Δ ( b ; γ ) , Δ ( σ ; μ ) , Δ ( a ; δ ) , 1 ; Δ ( 2 m ; α + β ) ; w b b 4 m σ σ a a ( 1 + r 1 ) m ( 1 + r 2 ) m ;
(xi)
Setting ξ = ν , λ = ϕ and a = 1 in (20), the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β E σ , μ , δ γ , b w ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m d x = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β Γ ( α ) Γ ( β ) Γ ( α + β ) Γ ( μ ) × 2 m + b + 1 F 2 m + σ + 1 Δ ( m ; α ) , Δ ( m ; β ) , Δ ( b ; γ ) , Δ ( σ ; μ ) , Δ ( 2 m ; α + β ) , 1 ; δ ; w b b 4 m σ σ ( 1 + r 1 ) m ( 1 + r 2 ) m ;
(xii)
Setting ξ = ν , λ = ϕ and a = b = 1 in (20), the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β E σ , μ γ , δ w ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m d x = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β Γ ( α ) Γ ( β ) Γ ( α + β ) Γ ( μ ) × 2 m + 2 F 2 m + σ + 1 Δ ( m ; α ) , Δ ( m ; β ) , γ , Δ ( σ ; μ ) , Δ ( 2 m ; α + β ) , 1 ; δ ; w 4 m σ σ ( 1 + r 1 ) m ( 1 + r 2 ) m ;
(xiii)
Setting ξ = ν , λ = ϕ and a = δ = 1 in (20), the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β E σ , μ γ , b w ( x p ) ( q x ) [ + ( q p ) r 1 ( x p ) + r 2 ( q x ) ] 2 m d x = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β Γ ( α ) Γ ( β ) Γ ( α + β ) Γ ( μ ) × 2 m + b F 2 m + σ Δ ( m ; α ) , Δ ( m ; β ) , Δ ( b ; γ ) ; Δ ( σ ; μ ) , Δ ( 2 m ; α + β ) ; w b b 4 m σ σ ( 1 + r 1 ) m ( 1 + r 2 ) m ;
(xiv)
Setting ξ = ν , λ = ϕ and a = b = δ = 1 in (20), the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β E σ , μ γ w ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m d x = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β Γ ( α ) Γ ( β ) Γ ( α + β ) Γ ( μ ) × 2 m + 1 F 2 m + σ Δ ( m ; α ) , Δ ( m ; β ) , γ ; Δ ( σ ; μ ) , Δ ( 2 m ; α + β ) ; w 4 m σ σ ( 1 + r 1 ) m ( 1 + r 2 ) m ;
(xv)
Setting ξ = ν , λ = ϕ and a = b = γ = δ = 1 in (20), the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β E σ , μ w ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m d x = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β Γ ( α ) Γ ( β ) Γ ( α + β ) Γ ( μ ) × 2 m + 1 F 2 m + σ Δ ( m ; α ) , Δ ( m ; β ) , 1 ; Δ ( σ ; μ ) , Δ ( 2 m ; α + β ) ; w 4 m σ σ ( 1 + r 1 ) m ( 1 + r 2 ) m ;
(xvi)
Setting ξ = ν , λ = ϕ and a = b = γ = δ = μ = 1 in (20), the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β E σ w ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m d x = Γ ( α ) Γ ( β ) Γ ( α + β ) 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β × 2 m + 1 F 2 m + σ Δ ( m ; α ) , Δ ( m ; β ) , 1 ; Δ ( σ ; 1 ) , Δ ( 2 m ; α + β ) ; w 4 m σ σ ( 1 + r 1 ) m ( 1 + r 2 ) m ;
(xvii)
Setting ξ = ν , λ = ϕ and a = b = γ = δ = μ = σ = 1 in (20), the following identity holds:
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β e w ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m d x = Γ ( α ) Γ ( β ) Γ ( α + β ) 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β × 2 m F 2 m Δ ( m ; α ) , Δ ( m ; β ) ; Δ ( 2 m ; α + β ) ; w 4 m σ σ ( 1 + r 1 ) m ( 1 + r 2 ) m .

4. Graphical Representation

Here, in terms of the parameter β , we illustrate Equations (14) and (15) using graphical simulations. For this, we evaluate the integrals numerically using the Gaussian quadrature Method (see [37]) and compare this with the main results. We choose k = 5 and n = 8 to get more precise results.

5. Conclusions

It is worth stressing that the generalized Mittag–Leffler function obtained and the integral formulas computed are amenable to further generalizations and future investigation. We have attempted to exploit the close connection of the generalized Mittag–Leffler functions with several important special functions and compute the integrals of the functions mentioned above in the form of the generalized Mittag–Leffler, linking different families of special functions. Our main results (15) and (20) and some special cases (24)–(32) can yield several new integrals in terms of Fox-H functions obtained from Equations (11) and (13). For instance, we write
p q ( x p ) α 1 ( q x ) β 1 ( q p ) + r 1 ( x p ) + r 2 ( q x ) α + β E σ , μ , ν , ϕ , δ , a ξ , λ , γ , b w ( x p ) ( q x ) [ ( q p ) + r 1 ( x p ) + r 2 ( q x ) ] 2 m d x = 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β Γ ( ν ) Γ ( δ ) Γ ( ξ ) Γ ( γ ) × 5 Ψ 4 ( ξ , λ ) , ( γ , b ) , ( α , m ) , ( β , m ) , ( 1 , 1 ) ; ( μ , σ ) , ( ν , ϕ ) , ( δ , a ) , ( α + β , 2 m ) ; w ( 1 + r 1 ) m ( 1 + r 2 ) m
= 1 ( q p ) ( 1 + r 1 ) α ( 1 + r 2 ) β Γ ( ν ) Γ ( δ ) Γ ( ξ ) Γ ( γ ) × H 5 , 5 1 , 5 w ( 1 + r 1 ) m ( 1 + r 2 ) m | ( 1 ξ , λ ) , ( 1 γ , b ) , ( 1 α , m ) , ( 1 β , m ) , ( 0 , 1 ) ( 0 , 1 ) , ( 1 μ , σ ) , ( 1 ν , ϕ ) , ( 1 δ , a ) , 1 ( α + β , 2 m ) ] ,
with all the conditions prescribed in Theorem 1. We have also proved that Figure 1, Figure 2 and Figure 3 show a good compatibility of the numerical solution obtained by the Gaussian quadrature method and the analytic expression. We conclude that the results obtained will provide a significant step in the theory of integral transforms and can yield some potential applications in the field of the classical and applied mathematics.

Author Contributions

Conceptualization, N.K. and S.A.-O.; methodology, T.U.; software, M.I.K.; validation, K.N. and M.I.K.; formal analysis, T.U.; investigation, N.K.; resources, S.A.-O.; data curation, S.A.-O.; writing—original draft preparation, T.U.; writing—review and editing, M.I.K.; visualization, N.K.; supervision, M.I.K.; project administration, K.N.; funding acquisition, K.N.; All authors have read and agreed to the published version of the manuscript.

Funding

This research has received funding support from the National Science, 43 Research and Innovation Fund (NSRF), Thailand.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors are thankful to the editors and reviewers for their valuable suggestions and comments.

Conflicts of Interest

The authors declare that they have no competing interest.

References

  1. Jain, S.; Agarwal, P.; Ahmad, B.; Al-Omari, S. Certain recent fractional integral inequalities associated with the hypergeometric operators. J. King Saud Univ.-Sci. 2016, 28, 82–86. [Google Scholar] [CrossRef] [Green Version]
  2. Al-Omari, S.; Baleanu, D. On the Generalized Stieltjes transform of Fox’s kernel function and its properties in the space of generalized functions. J. Comput. Anal. Appl. 2017, 23, 108–118. [Google Scholar]
  3. Agarwal, P.; Jain, S.; Kıymaz, I.O.; Chand, M.; Al-Omari, S. Certain sequence of functions involving generalized hypergeometric functions. Math. Sci. Appl. E-Notes 2015, 3, 45–53. [Google Scholar] [CrossRef]
  4. Khan, N.; Usman, T.; Aman, M.; Al-Omari, S.; Choi, J. Integral transforms and probality distributions involving generalized hypergeometric function. Georgian J. Math. 2021, 28, 2021–2105. [Google Scholar] [CrossRef]
  5. Chandak, S.; Al-Omari, S.K.Q.; Suthar, D.L. Unified integral associated with the generalized V-function. Adv. Differ. Equ. 2020, 2020, 560. [Google Scholar] [CrossRef]
  6. Choi, J.; Agarwal, P. A note on generalized integral operator associated with multiindex Mittag-Leffler function, Filomat 30, 1931–1939. Adv. Differ. Equ. 2020, 448, 1–11. [Google Scholar] [CrossRef]
  7. Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: New York, NY, USA, 2020; p. 540. [Google Scholar]
  8. Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler Functions and Their Applications. J. Appl. Math. 2011, 2011, 298628. [Google Scholar] [CrossRef] [Green Version]
  9. Kiryakova, V. Generalized Fractional Calculus and Applications; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
  10. Kiryakova, V. The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus. Comput. Math. Appl. 2010, 59, 1885–1895. [Google Scholar] [CrossRef] [Green Version]
  11. Kochubei, A.; Luchko, Y. Fractional Differential Equations. In Handbook of Fractional Calculus with Applications; De Gruyter: Berlin, Germany, 2019; Volume 2. [Google Scholar]
  12. Mainardi, F. Why the Mittag-Leffler Function Can Be Considered the Queen Function of the Fractional Calculus? Entropy 2020, 22, 1359. [Google Scholar] [CrossRef] [PubMed]
  13. Agarwal, P.; Choi, J.; Jain, S.; Rashidi, M.M. Certain integrals associated with generalized mittag-leffler function. Commun. Korean Math. Soc. 2017, 32, 29–38. [Google Scholar] [CrossRef] [Green Version]
  14. Almalahi, M.A.; Ghanim, F.; Botmart, T.; Bazighifan, O.; Askar, S. Qualitative Analysis of Langevin Integro-Fractional Differential Equation under Mittag–Leffler Functions Power Law. Fractal Fract. 2021, 5, 266. [Google Scholar] [CrossRef]
  15. Kamarujjama, M.; Khan, N.; Khan, O. Estimation of certain integrals with extended multi-index Bessel function. Malaya J. Mat. 2019, 7, 206–212. [Google Scholar] [CrossRef] [Green Version]
  16. Khan, N.; Usman, T.; Aman, M.; Al-Omari, S.; Araci, S. Computation of certain integral formulas involving generalized Wright function. Adv. Differ. Equ. 2020, 2020, 491. [Google Scholar] [CrossRef]
  17. Khan, N.; Usman, T.; Aman, M. Some properties concerning the analysis of generalized Wright function. J. Comput. Appl. Math. 2020, 376, 112840. [Google Scholar] [CrossRef]
  18. Khan, N.; Khan, S. Integral transform of generalized K-Mittag-Lefller function. J. Fract. Calc. Appl. 2018, 9, 13–21. [Google Scholar]
  19. Khan, N.; Ghayasuddin, M.; Shadab, M. Some Generating Relations of Extended Mittag-Leffler Functions. Kyungpook Math. J. 2019, 59, 325–333. [Google Scholar]
  20. Khan, N.; Husain, S. A note on extended beta function involving generalized Mittag-Leffler function and its applications. TWMS J. App. Eng. Math. 2022, 12, 71–81. [Google Scholar]
  21. Khan, O.; Khan, N.; Sooppy, K.A. Unified approach to the certain integrals of k-Mittag-Leffler type function of two variables. Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Math. 2019, 39, 98–108. [Google Scholar]
  22. Mihai, M.V.; Awan, M.U.; Noor, M.A.; Du, T.; Kashuri, A.; Noor, K.I. On Extended General Mittag–Leffler Functions and Certain Inequalities. Fractal Fract. 2019, 3, 32. [Google Scholar] [CrossRef] [Green Version]
  23. Prabhakar, T.R. A Singular Integral Equation with a Generalized Mittag-Leffler Function in the Kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
  24. Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integral and Series V.1. More Special Functio; Gordon and Breach: New York, NY, USA; London, UK, 1992. [Google Scholar]
  25. Rainville, E.D. Special Functions; The Macmillan Company: New York, NY, USA, 1960. [Google Scholar]
  26. Salim, T.O. Some properties relating to the generalized Mittag-Leffler function. Adv. Appl. Math. Anal. 2009, 4, 21–30. [Google Scholar]
  27. Salim, T.O.; Faraj, A.W. A generalization of Mittag-Leffler function and integral operator associated with fractional calculus. J. Fract. Calc. Appl. 2012, 3, 1–13. [Google Scholar]
  28. Shukla, A.; Prajapati, J. On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 2007, 336, 797–811. [Google Scholar] [CrossRef] [Green Version]
  29. Singh, P.; Jain, S.; Cattani, C. Some Unified Integrals for Generalized Mittag-Leffler Functions. Axioms 2021, 10, 261. [Google Scholar] [CrossRef]
  30. Suthar, D.L.; Amsalu, H.; Godifey, K. Certain integrals involving multivariate Mittag-Leffler function. J. Inequalities Appl. 2019, 2019, 208–224. [Google Scholar] [CrossRef] [Green Version]
  31. Mittag-Leffler, G.M. Sur la nouvelle fonction Eα(x). CR Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
  32. Rahman, G.; Suwan, I.; Nisar, K.S.; Abdeljawad, T.; Samraiz, M.; Ali, A. A basic study of a fractional integral operator with extended Mittag-Leffler kernel. AIMS Math. 2021, 6, 12757–12770. [Google Scholar] [CrossRef]
  33. Wiman, A. Uber den fundamental Satz in der Theories der Funktionen Eα(z). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
  34. Khan, M.A.; Ahmed, S. On some properties of the generalized Mittag-Leffler function. SpringerPlus 2013, 2, 337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  35. Wright, E.M. The asymptotic expansion of integral functions defined by Taylor series. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci. 1940, 238, 423–451. [Google Scholar] [CrossRef]
  36. Al-Omari, S. Estimation of a modified integral associated with a special function kernel of Fox’s H-function type. Commun. Korean Math. Soc. 2020, 35, 125–136. [Google Scholar]
  37. Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; US Government Printing Office: Washington, DC, USA, 1948; Volume 55.
  38. Fox, C. The Asymptotic Expansion of Generalized Hypergeometric Functions. Proc. Lond. Math. Soc. 1928, 2, 389–400. [Google Scholar] [CrossRef]
  39. Al-Omari, S. A revised version of the generalized Krätzel-Fox integral operators. Mathematics 2018, 6, 222. [Google Scholar] [CrossRef] [Green Version]
  40. Al-Omari, S. On a Class of Generalized Meijer-Laplace Transforms of Fox Function Type Kernels and Their Extension to a Class of Boehmians. Georgian Math. J. 2018, 25, 1–8. [Google Scholar] [CrossRef]
  41. Wright, E.M. The asymptotic expansion of the generalized hypergeometric function. Proc. Lond. Math. Soc. 1940, 2, 389–408. [Google Scholar] [CrossRef]
  42. Wright, E.M. The asymptotic expansion of the generalized hypergeometric function. J. Lond. Math. Soc. 1935, 1, 286–293. [Google Scholar] [CrossRef]
Figure 1. Solution of (14) for α = 6 , r 1 = 2 , r 2 = 2 , p = 0 and q = 1 .
Figure 1. Solution of (14) for α = 6 , r 1 = 2 , r 2 = 2 , p = 0 and q = 1 .
Symmetry 14 00869 g001
Figure 2. Solution of (15) (for q = 1 ) for α = 6 , r 1 = 2 , r 2 = 4 , p = 0 , ξ = 1 , λ = 2 , γ = 2 b = 3 , σ = 2 , μ = 5 , v = 2 , ϕ = 3 , δ = 2 , a = 4 , w = 3 and m = 2 .
Figure 2. Solution of (15) (for q = 1 ) for α = 6 , r 1 = 2 , r 2 = 4 , p = 0 , ξ = 1 , λ = 2 , γ = 2 b = 3 , σ = 2 , μ = 5 , v = 2 , ϕ = 3 , δ = 2 , a = 4 , w = 3 and m = 2 .
Symmetry 14 00869 g002
Figure 3. Solution of (15) (for all q) for α = 6 , r 1 = 2 , r 2 = 4 , p = 0 , ξ = 1 , λ = 2 , γ = 2 b = 3 , σ = 2 , μ = 5 , v = 2 , ϕ = 3 , δ = 2 , a = 4 , w = 3 and m = 2 .
Figure 3. Solution of (15) (for all q) for α = 6 , r 1 = 2 , r 2 = 4 , p = 0 , ξ = 1 , λ = 2 , γ = 2 b = 3 , σ = 2 , μ = 5 , v = 2 , ϕ = 3 , δ = 2 , a = 4 , w = 3 and m = 2 .
Symmetry 14 00869 g003
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Khan, N.; Khan, M.I.; Usman, T.; Nonlaopon, K.; Al-Omari, S. Unified Integrals of Generalized Mittag–Leffler Functions and Their Graphical Numerical Investigation. Symmetry 2022, 14, 869. https://doi.org/10.3390/sym14050869

AMA Style

Khan N, Khan MI, Usman T, Nonlaopon K, Al-Omari S. Unified Integrals of Generalized Mittag–Leffler Functions and Their Graphical Numerical Investigation. Symmetry. 2022; 14(5):869. https://doi.org/10.3390/sym14050869

Chicago/Turabian Style

Khan, Nabiullah, Mohammad Iqbal Khan, Talha Usman, Kamsing Nonlaopon, and Shrideh Al-Omari. 2022. "Unified Integrals of Generalized Mittag–Leffler Functions and Their Graphical Numerical Investigation" Symmetry 14, no. 5: 869. https://doi.org/10.3390/sym14050869

APA Style

Khan, N., Khan, M. I., Usman, T., Nonlaopon, K., & Al-Omari, S. (2022). Unified Integrals of Generalized Mittag–Leffler Functions and Their Graphical Numerical Investigation. Symmetry, 14(5), 869. https://doi.org/10.3390/sym14050869

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop