An Intelligent Hybrid Sentiment Analyzer for Personal Protective Medical Equipments Based on Word Embedding Technique: The COVID-19 Era
<p>Word2Vec’s CBOW and SG models.</p> "> Figure 2
<p>Word Embedding examples.</p> "> Figure 3
<p>A detailed description of the methodology processes.</p> "> Figure 4
<p>Feature number of other text representation methods.</p> "> Figure 5
<p>Features reduction rates.</p> ">
Abstract
:1. Introduction
- A new sentiment analysis study for classifying people’s opinions towards medical products that are related to the COVID-19 crisis, including gloves, hand sanitizers, face masks, and home oxygen concentrators, to provide decision-makers with analyzed observations of customers’ feedback to help them take prompt actions of the effectiveness of the products.
- Applying advanced pre-trained word embedding learning techniques for feature extraction and word presentation to overcome the challenges of the data.
- Conduct an evolutionary feature selection method to select the best subset of features, which are extracted by the word embedding technique, using different classifiers for evaluation.
2. Related Work
3. Preliminaries
3.1. Ordinal Regression
3.2. Evolutionary Algorithm
3.2.1. Harmony Search Algorithm
Algorithm 1 Search Algorithm (HSA) pseudo-code [56] |
|
3.2.2. Wrapper Feature Selection
3.3. Word Embedding Feature Extraction
Word2vec Embeddings
4. Methodology
4.1. Data Description and Collection
4.2. Data Preparation
4.3. Proposed Approach
5. Experiment and Results
5.1. Experimental Setup
5.2. Evaluation Measures
5.3. Comparison Experiments without Feature Selection
5.4. Evolutionary Algorithm Feature Selection
5.5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aljarah, I.; Habib, M.; Hijazi, N.; Faris, H.; Qaddoura, R.; Hammo, B.; Abushariah, M.; Alfawareh, M. Intelligent detection of hate speech in Arabic social network: A machine learning approach. J. Inf. Sci. 2020, 47, 0165551520917651. [Google Scholar] [CrossRef]
- Al-Zoubi, A.; Alqatawna, J.; Faris, H.; Hassonah, M.A. Spam profiles detection on social networks using computational intelligence methods: The effect of the lingual context. J. Inf. Sci. 2021, 47, 58–81. [Google Scholar] [CrossRef]
- Injadat, M.; Salo, F.; Nassif, A.B. Data mining techniques in social media: A survey. Neurocomputing 2016, 214, 654–670. [Google Scholar] [CrossRef]
- Jiménez-Zafra, S.M.; Martín-Valdivia, M.T.; Molina-González, M.D.; Ureña-López, L.A. How do we talk about doctors and drugs? Sentiment analysis in forums expressing opinions for medical domain. Artif. Intell. Med. 2019, 93, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Faris, H.; Alqatawna, J.; Ala’M, A.Z.; Aljarah, I. Improving email spam detection using content based feature engineering approach. In Proceedings of the 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Aqaba, Jordan, 11–13 October 2017; pp. 1–6. [Google Scholar]
- Medhat, W.; Hassan, A.; Korashy, H. Sentiment analysis algorithms and applications: A survey. Ain Shams Eng. J. 2014, 5, 1093–1113. [Google Scholar] [CrossRef] [Green Version]
- Beigi, G.; Hu, X.; Maciejewski, R.; Liu, H. An overview of sentiment analysis in social media and its applications in disaster relief. Sentim. Anal. Ontol. Eng. 2016, 639, 313–340. [Google Scholar]
- Harfoushi, O.; Hasan, D.; Obiedat, R. Sentiment analysis algorithms through azure machine learning: Analysis and comparison. Mod. Appl. Sci. 2018, 12, 49. [Google Scholar] [CrossRef]
- Altawaier, M.M.; Tiun, S. Comparison of machine learning approaches on arabic twitter sentiment analysis. Int. J. Adv. Sci. Eng. Inf. Technol. 2016, 6, 1067–1073. [Google Scholar] [CrossRef]
- Gautam, G.; Yadav, D. Sentiment analysis of twitter data using machine learning approaches and semantic analysis. In Proceedings of the 2014 Seventh International Conference on Contemporary Computing (IC3), Noida, India, 7–9 August 2014; pp. 437–442. [Google Scholar]
- Samal, B.; Behera, A.K.; Panda, M. Performance analysis of supervised machine learning techniques for sentiment analysis. In Proceedings of the 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS), Chennai, India, 4–5 May 2017; pp. 128–133. [Google Scholar]
- Ahelegbey, D.F.; Cerchiello, P.; Scaramozzino, R. Network Based Evidence of the Financial Impact of Covid-19 Pandemic. 2021. Available online: https://ideas.repec.org/p/pav/demwpp/demwp0198.html (accessed on 1 November 2021).
- Gonçalves, P.; Araújo, M.; Benevenuto, F.; Cha, M. Comparing and combining sentiment analysis methods. In Proceedings of the First ACM Conference on Online Social Networks, Boston, MA, USA, 7–8 October 2013; pp. 27–38. [Google Scholar]
- Feldman, R. Techniques and applications for sentiment analysis. Commun. ACM 2013, 56, 82–89. [Google Scholar] [CrossRef]
- Hasan, A.; Moin, S.; Karim, A.; Shamshirband, S. Machine learning-based sentiment analysis for twitter accounts. Math. Comput. Appl. 2018, 23, 11. [Google Scholar] [CrossRef] [Green Version]
- Oueslati, O.; Khalil, A.I.S.; Ounelli, H. Sentiment analysis for helpful reviews prediction. Int. J. 2018, 7, 34–40. [Google Scholar]
- Sharef, N.M.; Zin, H.M.; Nadali, S. Overview and Future Opportunities of Sentiment Analysis Approaches for Big Data. J. Comput. Sci. 2016, 12, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Denecke, K.; Deng, Y. Sentiment analysis in medical settings: New opportunities and challenges. Artif. Intell. Med. 2015, 64, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Ekbal, A.; Saha, S.; Bhattacharyya, P. Medical sentiment analysis using social media: Towards building a patient assisted system. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, 7–12 May 2018. [Google Scholar]
- Rozenblum, R.; Bates, D.W. Patient-Centred Healthcare, Social Media and the Internet: The Perfect Storm? 2013. Available online: https://qualitysafety.bmj.com/content/22/3/183 (accessed on 1 November 2021).
- Abualigah, L.; Alfar, H.E.; Shehab, M.; Hussein, A.M.A. Sentiment analysis in healthcare: A brief review. In Recent Advances in NLP: The Case of Arabic Language; Springer: Cham, Switerland, 2020; pp. 129–141. [Google Scholar]
- Polisena, J.; Andellini, M.; Salerno, P.; Borsci, S.; Pecchia, L.; Iadanza, E. Case Studies on the Use of Sentiment Analysis to Assess the Effectiveness and Safety of Health Technologies: A Scoping Review. IEEE Access 2021, 9, 66043–66051. [Google Scholar] [CrossRef]
- Li, J.; Xu, Q.; Cuomo, R.; Purushothaman, V.; Mackey, T. Data mining and content analysis of the Chinese social media platform Weibo during the early COVID-19 outbreak: Retrospective observational infoveillance study. JMIR Public Health Surveill. 2020, 6, e18700. [Google Scholar] [CrossRef] [Green Version]
- Espitia, A.; Rocha, N.; Ruta, M. Trade in Critical Covid-19 Products. 2020. Available online: https://openknowledge.worldbank.org/handle/10986/33514 (accessed on 1 November 2021).
- Kampf, G.; Scheithauer, S.; Lemmen, S.; Saliou, P.; Suchomel, M. COVID-19-associated shortage of alcohol-based hand rubs, face masks, medical gloves, and gowns: Proposal for a risk-adapted approach to ensure patient and healthcare worker safety. J. Hosp. Infect. 2020, 105, 424–427. [Google Scholar] [CrossRef]
- Deshpande, M.; Sarkar, A. BI and sentiment analysis. Bus. Intell. J. 2010, 15, 41–49. [Google Scholar]
- Gereffi, G. What does the COVID-19 pandemic teach us about global value chains? The case of medical supplies. J. Int. Bus. Policy 2020, 3, 287–301. [Google Scholar] [CrossRef]
- Ab Rahman, M.F.; Rusli, A.; Misman, M.A.; Rashid, A.A. Biodegradable gloves for waste management post-COVID-19 outbreak: A shelf-life prediction. ACS Omega 2020, 5, 30329–30335. [Google Scholar] [CrossRef]
- Stein, F.; Perry, M.; Banda, G.; Woolhouse, M.; Mutapi, F. Oxygen provision to fight COVID-19 in sub-Saharan Africa. BMJ Glob. Health 2020, 5, e002786. [Google Scholar] [CrossRef]
- Nakkazi, E. Oxygen supplies and COVID-19 mortality in Africa. Lancet Respir. Med. 2021, 9, e39. [Google Scholar] [CrossRef]
- Sardesai, I.; Grover, J.; Garg, M.; Nanayakkara, P.; Di Somma, S.; Paladino, L.; Anderson, H.L., III; Gaieski, D.; Galwankar, S.C.; Stawicki, S.P. Short term home oxygen therapy for COVID-19 patients: The COVID-HOT algorithm. J. Fam. Med. Prim. Care 2020, 9, 3209. [Google Scholar] [CrossRef]
- Hajiali, M. Big data and sentiment analysis: A comprehensive and systematic literature review. Concurr. Comput. Pract. Exp. 2020, 32, e5671. [Google Scholar] [CrossRef]
- Sun, Y.; Bao, Q.; Lu, Z. Coronavirus (Covid-19) outbreak, investor sentiment, and medical portfolio: Evidence from China, Hong Kong, Korea, Japan, and US. Pac.-Basin Financ. J. 2021, 65, 101463. [Google Scholar] [CrossRef]
- Yi, S.; Liu, X. Machine learning based customer sentiment analysis for recommending shoppers, shops based on customers’ review. Complex Intell. Syst. 2020, 6, 621–634. [Google Scholar] [CrossRef]
- Obiedat, R.; Harfoushi, O.; Qaddoura, R.; Al-Qaisi, L.; Al-Zoubi, A.M. An Evolutionary-Based Sentiment Analysis Approach for Enhancing Government Decisions during COVID-19 Pandemic: The Case of Jordan. Appl. Sci. 2021, 11, 9080. [Google Scholar] [CrossRef]
- Kumar, A.; Jaiswal, A. Systematic literature review of sentiment analysis on Twitter using soft computing techniques. Concurr. Comput. Pract. Exp. 2020, 32, e5107. [Google Scholar] [CrossRef]
- Jain, P.K.; Pamula, R.; Srivastava, G. A systematic literature review on machine learning applications for consumer sentiment analysis using online reviews. Comput. Sci. Rev. 2021, 41, 100413. [Google Scholar] [CrossRef]
- Chaturvedi, I.; Cambria, E.; Welsch, R.E.; Herrera, F. Distinguishing between facts and opinions for sentiment analysis: Survey and challenges. Inf. Fusion 2018, 44, 65–77. [Google Scholar] [CrossRef]
- Gohil, S.; Vuik, S.; Darzi, A. Sentiment analysis of health care tweets: Review of the methods used. JMIR Public Health Surveill. 2018, 4, e5789. [Google Scholar] [CrossRef]
- Lagu, T.; Metayer, K.; Moran, M.; Ortiz, L.; Priya, A.; Goff, S.L.; Lindenauer, P.K. Website characteristics and physician reviews on commercial physician-rating websites. JAMA 2017, 317, 766–768. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Y.; Jiang, X.; Zhang, W. Consumers’ satisfaction factors mining and sentiment analysis of B2C online pharmacy reviews. BMC Med. Inform. Decis. Mak. 2020, 20, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Na, J.C.; Kyaing, W.Y.M. Sentiment analysis of user-generated content on drug review websites. J. Inf. Sci. Theory Pract. 2015, 3, 6–23. [Google Scholar] [CrossRef] [Green Version]
- Gräßer, F.; Kallumadi, S.; Malberg, H.; Zaunseder, S. Aspect-based sentiment analysis of drug reviews applying cross-domain and cross-data learning. In Proceedings of the 2018 International Conference on Digital Health, Lyon, France, 23–26 April 2018; pp. 121–125. [Google Scholar]
- Daniulaityte, R.; Chen, L.; Lamy, F.R.; Carlson, R.G.; Thirunarayan, K.; Sheth, A. “When ‘bad’ is ‘good’”: Identifying personal communication and sentiment in drug-related tweets. JMIR Public Health Surveill. 2016, 2, e6327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basiri, M.E.; Abdar, M.; Cifci, M.A.; Nemati, S.; Acharya, U.R. A novel method for sentiment classification of drug reviews using fusion of deep and machine learning techniques. Knowl.-Based Syst. 2020, 198, 105949. [Google Scholar] [CrossRef]
- Harrison, C.J.; Sidey-Gibbons, C.J. Machine learning in medicine: A practical introduction to natural language processing. BMC Med. Res. Methodol. 2021, 21, 1–11. [Google Scholar] [CrossRef]
- Karyotaki, M.; Drigas, A.; Skianis, C. Attentional control and other executive functions. Int. J. Emerg. Technol. Learn. 2017, 12, 219–233. [Google Scholar]
- Drigas, A.; Karyotaki, M.; Skianis, C. Success: A 9 Layered-based Model of Giftedness. Int. J. Recent Contrib. Eng. Sci. IT 2017, 5, 4–18. [Google Scholar] [CrossRef] [Green Version]
- Papoutsi, C.; Drigas, A.; Skianis, C. Emotional intelligence as an important asset for HR in organizations: Attitudes and working variables. Int. J. Adv. Corp. Learn. 2019, 12, 21. [Google Scholar] [CrossRef]
- Bürkner, P.C.; Vuorre, M. Ordinal Regression Models in Psychology: A Tutorial. Adv. Methods Pract. Psychol. Sci. 2019, 2, 77–101. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, P.A.; Pérez-Ortiz, M.; Sánchez-Monedero, J.; Fernández-Navarro, F.; Hervás-Martínez, C. Ordinal Regression Methods: Survey and Experimental Study. IEEE Trans. Knowl. Data Eng. 2016, 28, 127–146. [Google Scholar] [CrossRef] [Green Version]
- Eiben, A.E.; Smith, J.E. What is an evolutionary algorithm? In Introduction to Evolutionary Computing; Springer: Berlin/Heidelberg, Germany, 2015; pp. 25–48. [Google Scholar]
- Qaddoura, R.; Faris, H.; Aljarah, I. An efficient evolutionary algorithm with a nearest neighbor search technique for clustering analysis. J. Ambient Intell. Humaniz. Comput. 2021, 12, 8387–8412. [Google Scholar] [CrossRef]
- Sloss, A.N.; Gustafson, S. 2019 Evolutionary Algorithms Review. arXiv 2019, arXiv:1906.08870. [Google Scholar]
- Qaddoura, R.; Manaseer, W.A.; Abushariah, M.A.; Alshraideh, M.A. Dental radiography segmentation using expectation-maximization clustering and grasshopper optimizer. Multimed. Tools Appl. 2020, 79, 22027–22045. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Geem, Z.W. A comprehensive survey of the harmony search algorithm in clustering applications. Appl. Sci. 2020, 10, 3827. [Google Scholar] [CrossRef]
- Al-Omoush, A.A.; Alsewari, A.A.; Alamri, H.S.; Zamli, K.Z. Comprehensive Review of the Development of the Harmony Search Algorithm and its Applications. IEEE Access 2019, 7, 14233–14245. [Google Scholar] [CrossRef]
- Ala’M, A.Z.; Hassonah, M.A.; Heidari, A.A.; Faris, H.; Mafarja, M.; Aljarah, I. Evolutionary competitive swarm exploring optimal support vector machines and feature weighting. Soft Comput. 2021, 25, 3335–3352. [Google Scholar]
- Gokalp, O.; Tasci, E.; Ugur, A. A novel wrapper feature selection algorithm based on iterated greedy metaheuristic for sentiment classification. Expert Syst. Appl. 2020, 146, 113176. [Google Scholar] [CrossRef]
- Ahmed, S.; Mafarja, M.; Faris, H.; Aljarah, I. Feature selection using salp swarm algorithm with chaos. In Proceedings of the 2nd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, Phuket, Thailand, 24–25 March 2018; pp. 65–69. [Google Scholar]
- Kumar, H.; Harish, B.; Darshan, H. Sentiment Analysis on IMDb Movie Reviews Using Hybrid Feature Extraction Method. Int. J. Interact. Multimed. Artif. Intell. 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Salau, A.O.; Jain, S. Feature Extraction: A Survey of the Types, Techniques, Applications. In Proceedings of the 2019 International Conference on Signal Processing and Communication (ICSC), Noida, India, 7–9 March 2019; pp. 158–164. [Google Scholar] [CrossRef]
- Li, Y.; Yang, T. Word embedding for understanding natural language: A survey. In Guide to Big Data Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 83–104. [Google Scholar]
- Srinivasan, S.; Ravi, V.; Alazab, M.; Ketha, S.; Ala’M, A.Z.; Padannayil, S.K. Spam emails detection based on distributed word embedding with deep learning. In Machine Intelligence and Big Data Analytics for Cybersecurity Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 161–189. [Google Scholar]
- Kaibi, I.; Nfaoui, E.H.; Satori, H. Sentiment analysis approach based on combination of word embedding techniques. In Embedded Systems and Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2020; pp. 805–813. [Google Scholar]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems; Curran Associates Inc.: Lake Tahoe, NV, USA, 2013; pp. 3111–3119. [Google Scholar]
- Petrović, S.; Osborne, M.; Lavrenko, V. The edinburgh twitter corpus. In Proceedings of the NAACL HLT 2010 Workshop on Computational Linguistics in a World of Social Media, Los Angeles, CA, USA, 6 June 2010; pp. 25–26. [Google Scholar]
- Qaddoura, R.; Aljarah, I.; Faris, H.; Almomani, I. A Classification Approach Based on Evolutionary Clustering and Its Application for Ransomware Detection. In Evolutionary Data Clustering: Algorithms and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 237–248. [Google Scholar]
- Shaw, S.; Prakash, M. Solar Radiation Forecasting Using Support Vector Regression. In Proceedings of the 2019 International Conference on Advances in Computing and Communication Engineering (ICACCE), Sathyamangalam, India, 4–6 April 2019; pp. 1–4. [Google Scholar]
- Ala’M, A.Z.; Rodan, A.; Alazzam, A. Classification model for credit data. In Proceedings of the 2018 Fifth HCT Information Technology Trends (ITT), Dubai, United Arab Emirates, 28–29 November 2018; pp. 132–137. [Google Scholar]
- Yaghi, R.I.; Faris, H.; Aljarah, I.; Ala’M, A.Z.; Heidari, A.A.; Mirjalili, S. Link prediction using evolutionary neural network models. In Evolutionary Machine Learning Techniques; Springer: Berlin/Heidelberg, Germany, 2020; pp. 85–111. [Google Scholar]
- Qaddoura, R.; Al-Zoubi, A.; Almomani, I.; Faris, H. A Multi-Stage Classification Approach for IoT Intrusion Detection Based on Clustering with Oversampling. Appl. Sci. 2021, 11, 3022. [Google Scholar] [CrossRef]
- Qaddoura, R.; Al-Zoubi, M.; Faris, H.; Almomani, I. A Multi-Layer Classification Approach for Intrusion Detection in IoT Networks Based on Deep Learning. Sensors 2021, 21, 2987. [Google Scholar] [CrossRef] [PubMed]
Datasets | Tokenization | Product Type | Dimensions |
---|---|---|---|
Data 1 | Word Embedding | Medical Gloves | 400 |
Data 2 | Word Embedding | Hand Sanitizer | 400 |
Data 3 | Word Embedding | Medical Oxygen | 400 |
Data 4 | Word Embedding | Face Masks | 400 |
Data 5 | Word Embedding | Merged all datasets | 400 |
Algorithm | Parameter | Value |
---|---|---|
HSA | [0, 1] | |
[0, 1] | ||
1.0 | ||
SVM | [0.0001, 32.0] | |
Cost (C) | [0.01, 35,000.0] | |
RF | Numbers of trees | 100 |
AdaBoost | n_estimator | 50 |
learning_rate | 1 | |
Bagging | n_estimators | 10 |
k-NN | k | 1 |
Reptree | Tree size | 100 |
Data | RF | k-NN | AdaBoost | Bagging | SVM | REPtree |
---|---|---|---|---|---|---|
Medical Gloves | 87.489 | 84.412 | 79.044 | 87.364 | 79.044 | 86.074 |
Hand Sanitizer | 84.034 | 76.244 | 83.340 | 83.790 | 80.039 | 84.261 |
Medical Oxygen | 81.395 | 73.924 | 81.383 | 81.182 | 79.373 | 80.552 |
Face Masks | 90.821 | 88.639 | 73.086 | 90.903 | 59.500 | 90.650 |
Whole Datasets | 93.458 | 92.032 | 77.392 | 93.050 | 75.822 | 93.431 |
Data | RF | k-NN | AdaBoost | Bagging | SVM | REPtree |
---|---|---|---|---|---|---|
Medical Gloves | 0.230 | 0.251 | 0.312 | 0.231 | 0.323 | 0.231 |
Hand Sanitizer | 0.235 | 0.273 | 0.273 | 0.237 | 0.283 | 0.237 |
Medical Oxygen | 0.249 | 0.281 | 0.287 | 0.250 | 0.287 | 0.254 |
Face Masks | 0.238 | 0.237 | 0.392 | 0.240 | 0.520 | 0.224 |
Whole Datasets | 0.155 | 0.160 | 0.309 | 0.157 | 0.311 | 0.148 |
Datasets | Reduced Dimensions |
---|---|
Medical Gloves | 23 |
Hand Sanitizer | 42 |
Medical Oxygen | 43 |
Face Masks | 30 |
Whole Datasets | 63 |
Data | HSA-RF | HSA-k-NN | HSA-AdaBoost | HSA-Bagging | HSA-SVM | HSA-REPtree |
---|---|---|---|---|---|---|
Medical Gloves | 87.022 | 86.397 | 79.044 | 86.397 | 79.044 | 86.074 |
Hand Sanitizer | 84.546 | 84.032 | 83.333 | 84.371 | 80.039 | 84.487 |
Medical Oxygen | 81.255 | 81.255 | 81.381 | 80.877 | 79.373 | 80.716 |
Face Masks | 90.389 | 90.381 | 73.127 | 91.508 | 59.500 | 90.650 |
Whole Datasets | 93.691 | 93.215 | 77.996 | 93.426 | 75.822 | 93.458 |
Data | HSA-RF | HSA-k-NN | HSA-AdaBoost | HSA-Bagging | HSA-SVM | HSA-REPtree |
---|---|---|---|---|---|---|
Medical Gloves | 0.231 | 0.228 | 0.311 | 0.235 | 0.323 | 0.231 |
Hand Sanitizer | 0.234 | 0.236 | 0.273 | 0.233 | 0.283 | 0.235 |
Medical Oxygen | 0.251 | 0.251 | 0.286 | 0.252 | 0.287 | 0.252 |
Face Masks | 0.238 | 0.221 | 0.392 | 0.240 | 0.520 | 0.224 |
Whole Datasets | 0.154 | 0.153 | 0.309 | 0.156 | 0.311 | 0.148 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obiedat, R.; Al-Qaisi, L.; Qaddoura, R.; Harfoushi, O.; Al-Zoubi, A.M. An Intelligent Hybrid Sentiment Analyzer for Personal Protective Medical Equipments Based on Word Embedding Technique: The COVID-19 Era. Symmetry 2021, 13, 2287. https://doi.org/10.3390/sym13122287
Obiedat R, Al-Qaisi L, Qaddoura R, Harfoushi O, Al-Zoubi AM. An Intelligent Hybrid Sentiment Analyzer for Personal Protective Medical Equipments Based on Word Embedding Technique: The COVID-19 Era. Symmetry. 2021; 13(12):2287. https://doi.org/10.3390/sym13122287
Chicago/Turabian StyleObiedat, Ruba, Laila Al-Qaisi, Raneem Qaddoura, Osama Harfoushi, and Ala’ M. Al-Zoubi. 2021. "An Intelligent Hybrid Sentiment Analyzer for Personal Protective Medical Equipments Based on Word Embedding Technique: The COVID-19 Era" Symmetry 13, no. 12: 2287. https://doi.org/10.3390/sym13122287
APA StyleObiedat, R., Al-Qaisi, L., Qaddoura, R., Harfoushi, O., & Al-Zoubi, A. M. (2021). An Intelligent Hybrid Sentiment Analyzer for Personal Protective Medical Equipments Based on Word Embedding Technique: The COVID-19 Era. Symmetry, 13(12), 2287. https://doi.org/10.3390/sym13122287