Experimental Validation of a Mathematical Model to Describe the Drug Cytotoxicity of Leukemic Cells
"> Figure 1
<p>Hemocytometer cell counting. Using a microscope, the live (transparent circle) and dead (blue circle) cells were counted per milliliter separately. The average cell count from each of the sets of 16 corner squares was multiplied by 2 to correct for the 1:1 dilution from the trypan blue addition and then multiplied by 10,000.</p> "> Figure 2
<p>Growth and natural death dynamics of A20 cells in vitro at different starting concentration: <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>4</mn> </msup> </mrow> </semantics></math> (<span style="color: #0000FF">blue</span> line), <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>4</mn> </msup> </mrow> </semantics></math> (<span style="color: #FF0000">red</span> line), and <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>3</mn> </msup> </mrow> </semantics></math> (<span style="color: #21721C">green</span> line) over 312 h. The cells were counted every 12 h starting at the 48th hour. The results at each time point are the mean +/− the standard deviation of 3 repeated experiments.</p> "> Figure 3
<p>Inhibition of A20 cell growth in vitro under the influence of Chl (<span style="color: #0000FF">blue</span> bars), Mel (<span style="color: #FF0000">red</span> bars), and Cyt (<span style="color: #21721C">green</span> bars) after 72 h. Each graph point represents the mean +/− the standard deviation for three repeated experiments.</p> "> Figure 4
<p>The time evolution of A (A20 living cells, solid lines) and actual experimental data from <a href="#symmetry-13-01760-f002" class="html-fig">Figure 2</a> (A20 cells in vitro, dashed lines) at different initial cell concentrations: <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>4</mn> </msup> </mrow> </semantics></math> cells/mL (<b><span style="color: #0000FF">blue</span></b> lines), <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>4</mn> </msup> </mrow> </semantics></math> cells/mL (<b><span style="color: #FF0000">red</span></b> lines), or <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>3</mn> </msup> </mrow> </semantics></math> cells/mL (<b><span style="color: #21721C">green</span></b> lines).</p> "> Figure 5
<p>Numerical simulations of the model Equations (1)–(3) represent the number of A20 cells affected by different concentrations of: (<b>A</b>) Chl; (<b>B</b>) Mel; (<b>C</b>) Cyt. Dashed curves are different concentrations of the drug; solid <b><span style="color: #FF0000">red</span></b> curves are the control, without the drug. Initial concentration of A20 cells: <math display="inline"><semantics> <mrow> <mi>A</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>4</mn> </msup> </mrow> </semantics></math>.</p> "> Figure 6
<p>Comparison between the model simulations (textured bars) and experimental data (fill bars) of A20 cell growth inhibition under the influence of different doses of Chl, Mel, or Cyt after 72 h.</p> "> Figure A1
<p>Numerical simulation of Equations (A1)–(A3) with the parameters as in <a href="#symmetry-13-01760-t001" class="html-table">Table 1</a>. The graph shows the progression over time (up to 600 h) of live (<b><span style="color: #FF0000">red</span></b> solid line) and dead (<b>black</b> solid line) A20 cells and the drug (<b><span style="color: #000000">black</span></b> dashed line). In (<b>A</b>), the initial conditions are: <math display="inline"><semantics> <mrow> <mi>A</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>4.6</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>1.7</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>. In (<b>B</b>), the initial conditions are: <math display="inline"><semantics> <mrow> <mi>A</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>3.5</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Reagents
2.2. Drug Cytotoxicity Assay
2.3. Validation of the Model
3. Results and Discussion
3.1. Cell Growth and Death Dynamics
3.2. Drug Cytotoxicity
3.3. Formulation of the Model
3.4. Estimation of the Parameters of the Model
- (cells/mL)—the initial number of A20 cells;
- (cells/mL)—the initial number of dead A20 cells (cell cultures commonly consist of at least 5% of dead cells);
- dose (M) (number of drug molecules/mL)—the dose concentration of Chl, Mel, or Cyt (this number may vary depending on the drug, but not significantly since all these drugs are related to the same type of small molecules).
- m = the mass of drug in kg;
- = Avogadro number = (constant);
- M = the molar mass of drug (Chl 304.212 g/mol; Mel 305.2 g/mol; Cyt 243.217 g/mol).
- = the number of cells at time t;
- = the number of cells at Time 0;
- r = growth rate;
- t = time (usually in hours).
3.5. Validation of the Cancer Cell Growth Dynamics Model
3.6. Validation of the Cancer Cell Drug Cytotoxicity Dynamics Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Simulated Effect of Drugs on A20 Cells
Concentration of Chl (µM) | Parameter | Number of Cells at 72nd Hour (cells/mL) | Cell Growth Inhibition (%) |
---|---|---|---|
0 | - | 1,646,260 | 0 |
50 | 0.018 | 717,369 | 56.4 |
25 | 0.0126 | 913,673 | 44.5 |
0.0088 | 1,089,350 | 33.8 | |
0.006 | 1,235,190 | 25 | |
0.004 | 1,349,710 | 18 | |
0.003 | 1,435,539 | 12.8 |
Concentration of Mel (µM) | Parameter | Number of Cells at 72nd Hour (cells/mL) | Cell Growth Inhibition (%) |
---|---|---|---|
0 | - | 1,646,260 | 0 |
50 | 0.0397 | 132,518 | 92 |
25 | 0.0278 | 240,547 | 85.4 |
0.0195 | 388,950 | 76.4 | |
0.0136 | 567,233 | 65.5 | |
0.0095 | 757,405 | 54 | |
0.0067 | 940,943 | 42.8 |
Concentration of Cyt (µM) | Parameter | Number of Cells at 72nd Hour (cells/mL) | Cell Growth Inhibition (%) |
---|---|---|---|
0 | - | 1,646,260 | 0 |
0.046 | 85,683 | 94.8 | |
0.0322 | 168,014 | 89.8 | |
0.0225 | 291,671 | 82.3 | |
0.0158 | 452,951 | 72.5 | |
0.011 | 637,807 | 61.3 | |
0.0077 | 827,114 | 49.7 | |
0.0054 | 1,003,650 | 39 | |
0.0038 | 1,156,420 | 29.7 | |
0.0026 | 1,281,250 | 22.2 | |
0.0018 | 1,378,920 | 16.2 | |
0.0013 | 1,452,970 | 11.7 |
Appendix A.2. Fixed Point Stability Analysis
- (cells/mL);
- (cells/mL);
- (number of drug molecules/mL).
- The eigenvalues of this Jacobian are:Thus, the fixed point is unstable. Equilibrium exists only if , which has no biological significance;
- .The eigenvalues of this Jacobian are:Thus, there is an asymptotic stability (Figure A1A);
- .The eigenvalues of this Jacobian are:Thus, is unstable. From a biological point of view, means that the dose of chemotherapy was insufficient, which permitted the cancer cells to achieve the maximum growth capacity. However, considering that is unstable, as can be seen in Figure A1B, after 60 h, the cancer cells experience a natural death.
Fixed Points | Stability | |||
---|---|---|---|---|
0 | 0 | 0 | unstable | |
0 | asymptotically stable | |||
K | 0 | 0 | unstable |
Appendix A.3. The Root-Mean-Squared Errors
Time (h) | Exp | Sim | Exp | Sim | Exp | Sim |
---|---|---|---|---|---|---|
48 | 50,000 | 54,054 | 10,000 | 10,070 | 10,000 | 5228 |
60 | 70,000 | 122,897 | 10,000 | 22,602 | 10,000 | 8821 |
72 | 100,000 | 273,025 | 10,000 | 50,236 | 10,000 | 14,854 |
84 | 120,000 | 577,722 | 30,000 | 109,941 | 20,000 | 24,948 |
96 | 590,000 | 1,114,930 | 80,000 | 234,397 | 30,000 | 41,736 |
108 | 1,850,000 | 1,862,730 | 80,000 | 477,462 | 40,000 | 69,424 |
120 | 2,580,000 | 2,621,770 | 320,000 | 900,296 | 120,000 | 114,512 |
132 | 3,490,000 | 3,180,420 | 800,000 | 1,509,560 | 130,000 | 186,545 |
144 | 3,650,000 | 3,498,490 | 1,190,000 | 2,184,030 | 550,000 | 298,370 |
156 | 2,440,000 | 3,641,320 | 3,120,000 | 2,732,350 | 820,000 | 464,737 |
168 | 2,320,000 | 3,654,730 | 3,070,000 | 3,052,090 | 1,030,000 | 697,464 |
180 | 2,020,000 | 3,500,150 | 2,950,000 | 3,162,600 | 1,300,000 | 996,212 |
192 | 1,710,000 | 3,062,170 | 2,760,000 | 3,125,520 | 1,440,000 | 1,338,190 |
204 | 1,550,000 | 2,364,930 | 2,120,000 | 2,990,300 | 1,600,000 | 1,676,040 |
216 | 1,450,000 | 1,672,210 | 2,020,000 | 2,785,060 | 1,770,000 | 1,951,030 |
228 | 1,240,000 | 1,149,160 | 1,900,000 | 2,523,550 | 1,980,000 | 2,114,600 |
240 | 960,000 | 779,597 | 1,540,000 | 2,212,900 | 2,160,000 | 2,141,610 |
252 | 870,000 | 551,455 | 1,240,000 | 1,859,650 | 2,050,000 | 2,029,460 |
264 | 850,000 | 388,608 | 1,030,000 | 1,474,810 | 1,900,000 | 1,791,020 |
276 | 720,000 | 276,498 | 980,000 | 1,078,450 | 1,440,000 | 1,451,290 |
288 | 500,000 | 198,206 | 750,000 | 702,772 | 1,030,000 | 1,050,550 |
300 | 210,000 | 142,884 | 520,000 | 388,800 | 880,000 | 648,799 |
312 | 50,000 | 103,435 | 160,000 | 171,158 | 240,000 | 318,579 |
RMSE | 0.016 | 0.013 | 0.008 |
Concentration of Drug (µM) | Chlorambucil | Melphalan | Cytarabine | |||
---|---|---|---|---|---|---|
Exp | Sim | Exp | Sim | Exp | Sim | |
50 | 56 | 56.4 | 92 | 92 | ||
25 | 53 | 44.5 | 89 | 85.4 | ||
12.5 | 39 | 33.8 | 87 | 76.4 | ||
6.25 | 33 | 25 | 86 | 65.5 | 95.2 | 94.8 |
3.125 | 28 | 18 | 76 | 54 | 93.5 | 89.8 |
1.5625 | 7 | 12.8 | 49 | 42.8 | 88.7 | 82.3 |
0.78 | 87 | 72.5 | ||||
0.39 | 85.2 | 61.3 | ||||
0.195 | 80.5 | 49.7 | ||||
0.098 | 66.25 | 39 | ||||
0.049 | 29.5 | 29.7 | ||||
0.024 | 18.9 | 22.2 | ||||
0.012 | 14.5 | 16.2 | ||||
0.006 | 7.7 | 11.7 | ||||
RMSE | 0.027 | 0.02 | 0.018 |
References
- Gaidano, G.; Foà, R.; Dalla-Favera, R. Molecular pathogenesis of chronic lymphocytic leukemia. J. Clin. Investig. 2012, 122, 3432–3438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burger, J.A. Treatment of Chronic Lymphocytic Leukemia. 2020. Available online: https://pubmed.ncbi.nlm.nih.gov/32726532/ (accessed on 30 July 2020).
- Huang, L.W.; Wong, S.W.; Andreadis, C.; Olin, R.L. Updates on Hematologic Malignancies in the Older Adult: Focus on Acute Myeloid Leukemia, Chronic Lymphocytic Leukemia, and Multiple Myeloma. Curr. Oncol. Rep. 2019, 21, 35. [Google Scholar] [CrossRef]
- Sharma, S.; Rai, K.R. Chronic lymphocytic leukemia (CLL) treatment: So many choices, such great options. Cancer 2019, 125, 1432–1440. [Google Scholar] [CrossRef]
- Parikh, S.A. Chronic lymphocytic leukemia treatment algorithm 2018. Blood Cancer J. 2018, 8, 93. [Google Scholar] [CrossRef] [PubMed]
- Friedman, A. A hierarchy of cancer models and their mathematical challenges. Discret. Contin. Dyn. Syst. Ser. B 2004, 4, 147–160. [Google Scholar] [CrossRef]
- Lowengrub, J.S.; Frieboes, H.B.; Jin, F.; Chuang, Y.L.; Li, X.; Macklin, P.; Wise, S.M.; Cristini, V. Nonlinear modeling of cancer: Bridging the gap between cells and tumours. Nonlinearity 2009, 23, R1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altrock, P.M.; Liu, L.L.; Michor, F. The mathematics of cancer: Integrating quantitative models. Nat. Rev. Cancer 2015, 15, 730. [Google Scholar] [CrossRef]
- Michor, F.; Beal, K. Improving cancer treatment via mathematical modeling: Surmounting the challenges is worth the effort. Cell 2015, 163, 1059–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araujo, R.P.; McElwain, D.S. A history of the study of solid tumour growth: The contribution of mathematical modeling. Bull. Math. Biol. 2004, 66, 1039–1091. [Google Scholar] [CrossRef] [PubMed]
- Eymard, N.; Volpert, V.; Kurbatova, P.; Volpert, V.; Bessonov, N.; Ogungbenro, K.; Aarons, L.; Janiaud, P.; Nony, P.; Bajard, A.; et al. Mathematical model of T-cell lymphoblastic lymphoma: Disease, treatment, cure or relapse of a virtual cohort of patients. Math. Med. Biol. A J. IMA 2018, 35, 25–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berezansky, L.; Bunimovich-Mendrazitsky, S.; Shklyar, B. Stability and controllability issues in mathematical modeling of the intensive treatment of leukemia. J. Optim. Theory Appl. 2015, 167, 326–341. [Google Scholar] [CrossRef]
- Tang, M.; Zhao, R.; van de Velde, H.; Tross, J.G.; Mitsiades, C.; Viselli, S.; Neuwirth, R.; Esseltine, D.L.; Anderson, K.; Ghobrial, I.M.; et al. Myeloma cell dynamics in response to treatment supports a model of hierarchical differentiation and clonal evolution. Clin. Cancer Res. 2016, 22, 4206–4214. [Google Scholar] [CrossRef] [Green Version]
- Kurbatova, P.; Bernard, S.; Bessonov, N.; Crauste, F.; Demin, I.; Dumontet, C.; Fischer, S.; Volpert, V. Hybrid model of erythropoiesis and leukemia treatment with cytosine arabinoside. SIAM J. Appl. Math. 2011, 71, 2246–2268. [Google Scholar] [CrossRef] [Green Version]
- Vitale, B.; Martinis, M.; Antica, M.; Kušić, B.; Rabatić, S.; Gagro, A.; Kušec, R.; Jakšić, B. Prolegomenon for chronic lymphocytic leukaemia. Scand. J. Immunol. 2003, 58, 588–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinis, M.; Vitale, B.; Zlatic, V.; Dobrošević, B.; Dodig, K. Mathematical model of B-cell chronic lymphocytic leukemia (CLL). Period. Biol. 2005, 107, 445–450. [Google Scholar]
- Nanda, S.; de Pillis, L.G.; Radunskaya, A.E. B cell chronic lymphocytic leukemia-a model with immune response. Discret. Contin. Dyn. Syst. B 2013, 18, 1053–1076. [Google Scholar] [CrossRef]
- Kuznetsov, V.A.; Makalkin, I.A.; Taylor, M.A.; Perelson, A.S. Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis. Bull. Math. Biol. 1994, 56, 295–321. [Google Scholar] [CrossRef]
- Messmer, B.T.; Messmer, D.; Allen, S.L.; Kolitz, J.E.; Kudalkar, P.; Cesar, D.; Murphy, E.J.; Koduru, P.; Ferrarini, M.; Zupo, S.; et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J. Clin. Investig. 2005, 115, 755–764. [Google Scholar] [CrossRef] [Green Version]
- Axenie, C.; Kurz, D. CHIMERA: Combining Mechanistic Models and Machine Learning for Personalized Chemotherapy and Surgery Sequencing in Breast Cancer. In International Symposium on Mathematical and Computational Oncology; Springer: Berlin, Germany, 2020; pp. 13–24. [Google Scholar]
- Bloomingdale, P.; Mager, D.E. Machine learning models for the prediction of chemotherapy-induced peripheral neuropathy. Pharm. Res. 2019, 36, 35. [Google Scholar] [CrossRef]
- Meng, H.Y.; Jin, W.L.; Yan, C.K.; Yang, H. The application of machine learning techniques in clinical drug therapy. Curr. Comput. Aided Drug Des. 2019, 15, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.S.; Mancera, P.F.; Carvalho, T.; Gonçalves, L.F. A mathematical model for chemoimmunotherapy of chronic lymphocytic leukemia. Appl. Math. Comput. 2019, 349, 118–133. [Google Scholar] [CrossRef] [Green Version]
- Begleiter, A.; Mowat, M.; Israels, L.G.; Johnston, J.B. Chlorambucil in Chronic Lymphocytic Leukemia: Mechanism of Action. Leuk. Lymphoma 1996, 23, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Samuels, B.L.; Bitran, J.D. High-dose intravenous melphalan: A review. J. Clin. Oncol. 1995, 13, 1786–1799. [Google Scholar] [CrossRef] [PubMed]
- Faruqi, A.; Tadi, P. Cytarabine. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Weinberg, R.A. The Biology of Cancer; Garland Science: New York, NY, USA, 2013. [Google Scholar]
- Lüllmann, H.; Mohr, K.; Hein, L.; Bieger, D. Color Atlas of Pharmacology; Thieme: New York, NY, USA, 2000. [Google Scholar]
- Krampe, B.; Al-Rubeai, M. Cell death in mammalian cell culture: Molecular mechanisms and cell line engineering strategies. Cytotechnology 2010, 62, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Brauchle, E.; Thude, S.; Brucker, S.Y.; Schenke-Layland, K. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy. Sci. Rep. 2014, 4, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, A.; Lacalle, J.; Cañavate, M.; Alonso-Alconada, D.; Lara-Celador, I.; Alvarez, F.; Hilario, E. Cell death. A comprehensive approximation. Necrosis. Microsc. Sci. Technol. Appl. Educ. 2010, 1, 1017–1024. [Google Scholar]
- Bellman, R. Mathematical Methods in Medicine; World Scientific: Singapore, 1983. [Google Scholar] [CrossRef]
- Skipper, H.E.; Schabel, F.M.; Wilcox, W.S. Experimental evaluation of potential anticancer agents. xiii. on the criteria and kinetics associated with “curability” of experimental leukemia. Cancer Chemother. Rep. 1964, 35, 1–111. [Google Scholar]
- Aroesty, J.; Lincoln, T.; Shapiro, N.; Boccia, G. Tumor growth and chemotherapy: Mathematical methods, computer simulations, and experimental foundations. Math. Biosci. 1973, 17, 243–300. [Google Scholar] [CrossRef]
Parameter | Physical Interpretation (Units) | Estimated Value | Reference |
---|---|---|---|
t | Time of cell culture (h) | 0–312 | Experimental data |
r | A20 growth rate (h) | Experimental data | |
K | Maximal tumor cell population (cells/mL) | Experimental data | |
Living cells become dead (h) | From simulation | ||
a | Drug dose that produces 50% maximum effect (mL) | From [27] | |
Cytotoxicity rate in the presence of drug (h) | see Table A1, Table A2 and Table A3 | From simulation | |
Deactivation rate of drug due to killing of A20 cells (h) | From simulation | ||
Chemical deactivation rate of drug (h) | 0.462—Chl; 0.347—Mel; 0.231—Cyt | From [28] | |
d | Dissolution rate of dead A20 cells (h) | From simulation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzev, E.; Luboshits, G.; Bunimovich-Mendrazitsky, S.; Firer, M.A. Experimental Validation of a Mathematical Model to Describe the Drug Cytotoxicity of Leukemic Cells. Symmetry 2021, 13, 1760. https://doi.org/10.3390/sym13101760
Guzev E, Luboshits G, Bunimovich-Mendrazitsky S, Firer MA. Experimental Validation of a Mathematical Model to Describe the Drug Cytotoxicity of Leukemic Cells. Symmetry. 2021; 13(10):1760. https://doi.org/10.3390/sym13101760
Chicago/Turabian StyleGuzev, Ekaterina, Galia Luboshits, Svetlana Bunimovich-Mendrazitsky, and Michael A. Firer. 2021. "Experimental Validation of a Mathematical Model to Describe the Drug Cytotoxicity of Leukemic Cells" Symmetry 13, no. 10: 1760. https://doi.org/10.3390/sym13101760
APA StyleGuzev, E., Luboshits, G., Bunimovich-Mendrazitsky, S., & Firer, M. A. (2021). Experimental Validation of a Mathematical Model to Describe the Drug Cytotoxicity of Leukemic Cells. Symmetry, 13(10), 1760. https://doi.org/10.3390/sym13101760