Relationship between Unstable Point Symmetries and Higher-Order Approximate Symmetries of Differential Equations with a Small Parameter
<p>The approximate solution (<a href="#FD117-symmetry-13-01612" class="html-disp-formula">117</a>) of the perturbed Boussinesq Equation (<a href="#FD97-symmetry-13-01612" class="html-disp-formula">97</a>) with initial conditions (<a href="#FD116-symmetry-13-01612" class="html-disp-formula">116</a>) vs. the numerical solution for the small parameter values <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Numerical and approximate solution details for the Boussinesq ODE (<a href="#FD97-symmetry-13-01612" class="html-disp-formula">97</a>) with a small parameter <math display="inline"><semantics> <mi>ϵ</mi> </semantics></math>. (<b>a</b>) The conservative estimate (<a href="#FD120-symmetry-13-01612" class="html-disp-formula">120</a>) of the total numerical error at <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mi>L</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> as a function of <math display="inline"><semantics> <mi>ϵ</mi> </semantics></math>, for the tolerance values (<a href="#FD122-symmetry-13-01612" class="html-disp-formula">122</a>). (<b>b</b>) The difference between the numerical and approximate solutions <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>(</mo> <mi>L</mi> <mo>;</mo> <mi>ϵ</mi> <mo>)</mo> </mrow> </semantics></math> (<a href="#FD121-symmetry-13-01612" class="html-disp-formula">121</a>) at <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mi>L</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> as a function of <math display="inline"><semantics> <mi>ϵ</mi> </semantics></math>. (<b>c</b>) The numerical-approximate solution difference <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>(</mo> <mi>x</mi> <mo>;</mo> <mi>ϵ</mi> <mo>)</mo> </mrow> </semantics></math> (<a href="#FD121-symmetry-13-01612" class="html-disp-formula">121</a>) as a function of <span class="html-italic">x</span> for the small parameter <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Lie Groups of Exact and Approximate Point and Local Symmetries
2.1. Exact and Approximate Transformation Groups
- Find the corresponding first-order deformation (the part of the generator (14)) using the equation
2.2. Stable and Unstable Symmetries in the BGI Framework
- 1.
- Exact symmetries inherited from the unperturbed ODE (8), involving only components
- 2.
- 3.
3. Exact and Approximate Point Symmetries of Algebraic and Ordinary Differential Equations
3.1. Algebraic and First-Order Differential Equations
- an infinite set of exact Lie point symmetries of the perturbed equation; and
- an infinite set of approximate BGI point symmetries of the perturbed equation.
3.2. Second and Higher-Order ODEs
4. Exact and Approximate Local Symmetries of Higher-Order ODEs
4.1. Exact Local Symmetries of the Unperturbed ODE
4.2. Approximate Local Symmetries of the Perturbed ODEs
4.3. The First Detailed Example
4.4. The Second Detailed Example
4.4.1. Exact Point Symmetries of (63); Approximate Point Symmetries of (64)
4.4.2. Exact Second-Order Local Symmetries of (63); Approximate Second-Order Local Symmetries of (64)
4.4.3. Higher-Order Approximate Symmetries Corresponding to Unstable Point and Local Symmetries of (63)
5. Reduction of Order and Approximately Invariant Solutions of Perturbed Differential Equations
5.1. Approximate Integrating Factors Using Approximate Point Symmetries
5.2. Determining Equations for Approximate Integrating Factors
5.3. Reduction of Order under Contact and Higher-Order Symmetries
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000; Volume 107. [Google Scholar]
- Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2010; Volume 168. [Google Scholar]
- Baikov, V.; Gazizov, R.; Ibragimov, N.K. Approximate symmetry and formal linearization. J. Appl. Mech. Tech. Phys. 1989, 30, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Baikov, V.; Gazizov, R.; Ibragimov, N.K. Perturbation methods in group analysis. J. Sov. Math. 1991, 55, 1450–1490. [Google Scholar] [CrossRef]
- Baikov, V.A.; Gazizov, R.K.; Ibragimov, N.H. Approximate groups of transformations. Differ. Uravn. 1993, 29, 1712–1732. [Google Scholar]
- Gazizov, R.K. Lie algebras of approximate symmetries. J. Nonlinear Math. Phys. 1996, 3, 96–101. [Google Scholar] [CrossRef]
- Ünal, G. Periodic solutions and approximate symmetries. Nonlinear Dyn. 2000, 22, 111–120. [Google Scholar] [CrossRef]
- Baikov, V.; Habibullin, R.; Vasil’ev, I. Modern Group Analysis for the New Millennium. In Proceedings of the International Conference MOGRAN 2000, Ufa, Russia, 27 September–3 October 2000. [Google Scholar]
- Bai, Y.S.; Zhang, Q. Approximate Symmetry Analysis and Approximate Conservation Laws of Perturbed KdV Equation. Adv. Math. Phys. 2018, 2018, 4743567. [Google Scholar] [CrossRef]
- Fushchich, W.; Shtelen, W. On approximate symmetry and approximate solutions of the nonlinear wave equation with a small parameter. J. Phys. A Math. Gen. 1989, 22, L887. [Google Scholar] [CrossRef] [Green Version]
- Euler, N.; Shul’ga, M.W.; Steeb, W.H. Approximate symmetries and approximate solutions for a multidimensional Landau-Ginzburg equation. J. Phys. A Math. Gen. 1992, 25, 1095–1103. [Google Scholar] [CrossRef]
- Euler, M.; Euler, N.; Kohler, A. On the construction of approximate solutions for a multidimensional nonlinear heat equation. J. Phys. A Math. Gen. 1994, 27, 2083. [Google Scholar] [CrossRef]
- Wiltshire, R. Two approaches to the calculation of approximate symmetry exemplified using a system of advection–diffusion equations. J. Comput. Appl. Math. 2006, 197, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Grebenev, V.; Oberlack, M. Approximate Lie symmetries of the Navier-Stokes equations. J. Nonlinear Math. Phys. 2007, 14, 157–163. [Google Scholar] [CrossRef]
- Mahdavi, A.; Nadjafikhah, M.; Toomanian, M. Two Approaches to the Calculation of Approximate Symmetry of Ostrovsky Equation with Small Parameter. Math. Phys. Anal. Geom. 2015, 18, 3. [Google Scholar] [CrossRef]
- Ahmed, W.A.; Zaman, F.; Saleh, K. Invariant solutions for a class of perturbed nonlinear wave equations. Mathematics 2017, 5, 59. [Google Scholar] [CrossRef] [Green Version]
- Jiao, X.; Yao, R.; Lou, S. Approximate similarity reduction for singularly perturbed Boussinesq equation via symmetry perturbation and direct method. J. Math. Phys. 2008, 49, 093505. [Google Scholar] [CrossRef] [Green Version]
- Burde, G.I. Potential symmetries of the nonlinear wave equation utt = (uux)x and related exact and approximate solutions. J. Phys. A Math. Gen. 2001, 34, 5355. [Google Scholar] [CrossRef]
- Bluman, G.; Anco, S. Symmetry and Integration Methods for Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 154. [Google Scholar]
- Ibragimov, N.H. Integrating factors, adjoint equations and Lagrangians. J. Math. Anal. Appl. 2006, 318, 742–757. [Google Scholar] [CrossRef] [Green Version]
- van Horssen, W.T. A perturbation method based on integrating factors. SIAM J. Appl. Math. 1999, 59, 1427–1443. [Google Scholar] [CrossRef]
- Ibragimov, N.H. CRC Handbook of Lie Group Analysis of Differential Equations; CRC Press: Boca Raton, FL, USA, 1995; Volume 3. [Google Scholar]
- Ibragimov, N.K.; Kovalev, V.F. Approximate and Renormgroup Symmetries; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Jafari, H.; Borhanifar, A.; Karimi, S. New solitary wave solutions for the bad Boussinesq and good Boussinesq equations. Numer. Methods Partial. Differ. Equ. Int. J. 2009, 25, 1231–1237. [Google Scholar] [CrossRef]
- Manoranjan, V.; Ortega, T.; Sanz-Serna, J. Soliton and antisoliton interactions in the ‘‘good’’ Boussinesq equation. J. Math. Phys. 1988, 29, 1964–1968. [Google Scholar] [CrossRef]
- Clarkson, P.A.; Kruskal, M.D. New similarity reductions of the Boussinesq equation. J. Math. Phys. 1989, 30, 2201–2213. [Google Scholar] [CrossRef]
- Dormand, J.R.; Prince, P.J. A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 1980, 6, 19–26. [Google Scholar] [CrossRef] [Green Version]
- O’Malley, R.E. Singular Perturbation Methods for Ordinary Differential Equations; Springer: Berlin/Heidelberg, Germany, 1991; Volume 89. [Google Scholar]
- Whitham, G.B. Linear and Nonlinear Waves; Wiley-Interscience: Hoboken, NJ, USA, 1999. [Google Scholar]
- Cheviakov, A.; Ganghoffer, J.F. One-dimensional nonlinear elastodynamic models and their local conservation laws with applications to biological membranes. J. Mech. Behav. Biomed. Mater. 2016, 58, 105–121. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarayrah, M.R.; Cheviakov, A.F. Relationship between Unstable Point Symmetries and Higher-Order Approximate Symmetries of Differential Equations with a Small Parameter. Symmetry 2021, 13, 1612. https://doi.org/10.3390/sym13091612
Tarayrah MR, Cheviakov AF. Relationship between Unstable Point Symmetries and Higher-Order Approximate Symmetries of Differential Equations with a Small Parameter. Symmetry. 2021; 13(9):1612. https://doi.org/10.3390/sym13091612
Chicago/Turabian StyleTarayrah, Mahmood R., and Alexei F. Cheviakov. 2021. "Relationship between Unstable Point Symmetries and Higher-Order Approximate Symmetries of Differential Equations with a Small Parameter" Symmetry 13, no. 9: 1612. https://doi.org/10.3390/sym13091612
APA StyleTarayrah, M. R., & Cheviakov, A. F. (2021). Relationship between Unstable Point Symmetries and Higher-Order Approximate Symmetries of Differential Equations with a Small Parameter. Symmetry, 13(9), 1612. https://doi.org/10.3390/sym13091612