Dynamics of Plane Waves in the Fractional Nonlinear Schrödinger Equation with Long-Range Dispersion
<p>Contour plots of <math display="inline"><semantics> <mrow> <mi>Re</mi> <mo>(</mo> <msubsup> <mi mathvariant="sans-serif">Λ</mi> <mi>l</mi> <mo>+</mo> </msubsup> <mo>)</mo> </mrow> </semantics></math> to show the stability of traveling plane wave solutions with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> in the defocusing NLS. Note that the instability growth rate, indicated by the numbers on the right of the colorbars, is smaller for the smaller values of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> (in panels (<b>c</b>) and (<b>d</b>)).</p> "> Figure 2
<p>Contour plots of <math display="inline"><semantics> <mrow> <mi>Re</mi> <mo>(</mo> <msubsup> <mi mathvariant="sans-serif">Λ</mi> <mi>l</mi> <mo>+</mo> </msubsup> <mo>)</mo> </mrow> </semantics></math> to show the stability of standing plane wave solutions with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> in the focusing NLS. Note that when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>></mo> <mn>1</mn> </mrow> </semantics></math>, one <math display="inline"><semantics> <mrow> <mi>Re</mi> <mo>(</mo> <msubsup> <mi mathvariant="sans-serif">Λ</mi> <mi>l</mi> <mo>+</mo> </msubsup> <mo>)</mo> <mo>></mo> <mn>0</mn> </mrow> </semantics></math> (i.e., instability is present) for <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <msub> <mi>μ</mi> <mi>l</mi> </msub> <mrow> <mo stretchy="false">|</mo> <mo>≪</mo> <mn>1</mn> </mrow> </mrow> </semantics></math>, although their values are small.</p> "> Figure 3
<p>Contour plots of <math display="inline"><semantics> <mrow> <mi>Re</mi> <mo>(</mo> <msubsup> <mi mathvariant="sans-serif">Λ</mi> <mi>l</mi> <mo>+</mo> </msubsup> <mo>)</mo> </mrow> </semantics></math> to show the stability of traveling plane wave solutions with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> in the focusing NLS. For <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>></mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>Re</mi> <mo>(</mo> <msubsup> <mi mathvariant="sans-serif">Λ</mi> <mi>l</mi> <mo>+</mo> </msubsup> <mo>)</mo> <mo>></mo> <mn>0</mn> </mrow> </semantics></math> (i.e., instability is present) for <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <msub> <mi>μ</mi> <mi>l</mi> </msub> <mrow> <mo stretchy="false">|</mo> <mo>≪</mo> <mn>1</mn> </mrow> </mrow> </semantics></math>, although their values are small. In contrast, there is a “stable gap” at low-<math display="inline"><semantics> <mi>μ</mi> </semantics></math> region if <math display="inline"><semantics> <mrow> <mi>α</mi> <mo><</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Dynamics of unstable standing plane waves in the focusing NLS with <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>5</mn> <mi>π</mi> </mrow> </semantics></math>. The recurrence of plane wave solution is observed in the classical NLS.</p> "> Figure 5
<p>Time evolution of <math display="inline"><semantics> <mrow> <msub> <mo form="prefix">log</mo> <mn>10</mn> </msub> <mrow> <mo stretchy="false">|</mo> <mi mathvariant="script">F</mi> <mrow> <mo>[</mo> <mi>u</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mo stretchy="false">|</mo> </mrow> </mrow> </semantics></math> for unstable standing plane waves in the focusing NLS with <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>5</mn> <mi>π</mi> </mrow> </semantics></math>. We show only the range <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>></mo> <mn>0</mn> </mrow> </semantics></math> because the solution’s spectrum is symmetric about <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. Also, the <span class="html-italic">one-sided</span> width of the computational spectral domain that we used was twice as large as shown in the figure.</p> "> Figure 6
<p>Dynamics of unstable standing plane waves in the focusing NLS with <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>−</mo> <mn>0.8</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>5</mn> <mi>π</mi> </mrow> </semantics></math>.</p> "> Figure 7
<p>The field and its Fourier spectrum for <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>5</mn> <mi>π</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>k</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, taken at time instances indicated in the legend. Only part of the resolved Fourier spectrum is shown in panel (<b>b</b>). At all simulated times before the collapse, the magnitude of the Fourier spectrum at the edge of the computational spectral window is on the order of <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>12</mn> </mrow> </msup> </semantics></math>.</p> "> Figure 8
<p>Dynamics of unstable standing plane waves in the focusing NLS with <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>10</mn> <mi>π</mi> </mrow> </semantics></math>.</p> "> Figure 9
<p>Dynamics of the unstable traveling plane wave solution in the focusing NLS with <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>5</mn> <mi>π</mi> </mrow> </semantics></math>, where <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>k</mi> </msub> <mo>=</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>L</mi> </mrow> </semantics></math> in the initial state (<a href="#FD39-symmetry-13-01394" class="html-disp-formula">39</a>).</p> "> Figure 10
<p>Same as <a href="#symmetry-13-01394-f007" class="html-fig">Figure 7</a>, but for <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>k</mi> </msub> <mo>=</mo> <mn>5</mn> <mo>·</mo> <mrow> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>L</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. At all simulated times before the collapse, the magnitude of the Fourier spectrum at the edge of the computational spectral window is on the order of <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>12</mn> </mrow> </msup> </semantics></math>. The fact that in panel (<b>a</b>) the “hump” at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>286</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>289</mn> </mrow> </semantics></math> appears at approximately the same location is a coincidence; this pulse moves around the computational window.</p> "> Figure A1
<p>(<b>a</b>) Illustration of the main and aliased regions for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>k</mi> </msub> <mo>/</mo> <msub> <mi>μ</mi> <mo movablelimits="true" form="prefix">max</mo> </msub> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math>, where <math display="inline"><semantics> <msub> <mi>θ</mi> <mi>l</mi> </msub> </semantics></math> is defined in (<a href="#FD33-symmetry-13-01394" class="html-disp-formula">33</a>) with <math display="inline"><semantics> <mi>τ</mi> </semantics></math> exceeding the instability threshold (<a href="#FD37-symmetry-13-01394" class="html-disp-formula">37</a>) by 10%. Note that <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mi>m</mi> </msub> <mo>≡</mo> <msub> <mi>μ</mi> <mi>l</mi> </msub> <mo>+</mo> <msub> <mi>λ</mi> <mi>k</mi> </msub> </mrow> </semantics></math>, as noted in <a href="#sec3dot2-symmetry-13-01394" class="html-sec">Section 3.2</a>. For smaller ratios <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>k</mi> </msub> <mo>/</mo> <msub> <mi>μ</mi> <mo movablelimits="true" form="prefix">max</mo> </msub> </mrow> </semantics></math> the relative size of the aliased region is smaller. (<b>b</b>) Relative difference <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <msub> <mi>θ</mi> <mrow> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>k</mi> </mrow> </msub> <mo>−</mo> <msub> <mi>θ</mi> <mrow> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mrow> <mo stretchy="false">|</mo> <mo>/</mo> <mo>(</mo> <mo stretchy="false">|</mo> </mrow> <msub> <mi>θ</mi> <mrow> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>θ</mi> <mrow> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mrow> <mo stretchy="false">|</mo> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> in the aliased region.</p> ">
Abstract
:1. Introduction
2. Plane Wave Solution and Its Stability
- (i)
- For , a standing plane wave is always stable to infinitesimal perturbations.
- (ii)
- For , a traveling plane wave is always stable, independent of the wave number .
- (iii)
- For , a traveling plane wave could be unstable if is sufficiently large. Moreover, the growth rate of this instability is maximized at modes with , if the following condition is satisfied:
- (i)
- For , a standing plane wave is unstable, provided that there is at least one such that . Moreover, the number of unstable pairs is given by
- (ii)
- For , a traveling plane wave is unstable, if L and/or are sufficiently large.
3. Split-Step Fourier Spectral Method
3.1. Description of the SSFS Method
3.2. Stability of the SSFS Method
4. Dynamics of Plane Wave Solutions
4.1. Standing Plane Waves
4.2. Effects of a Larger Domain
4.3. Effects of Nonzero Group Velocity (7) of the Plane Wave
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Derivation of Theorem 3
- (i)
- For , the condition (A2) implies (recall that and thus ):For , the situation is illustrated by the solid curve in Figure A1a, which shows that the maximum value occurs at the edges of the spectral regions (30). Taking then l at the edge of , so that (see Figure A1a), yields . Using (33) and substituting the result into the left inequality in (A3), one obtains the first line of the stability condition (37) with the first argument of the “max” operator. The second argument of “max” comes into play when one considers the case , where, as illustrated by the dashed line in Figure A1a, occurs in the middle of the aliased region: .
- (ii)
- For , the condition (A2) impliesNote that the condition (A4) can be satisfied only when and . In other words, the stability condition of the SSFS method in simulating the standing plane wave is always given by (A3). For and , the minimum value is attained for rather than for as for ; see the dashed line in Figure A1a. It will be the condition (A4) rather than (A3) that will set the stability threshold when , or equivalently, . Using (33), this yieldsThe critical value defined in Theorem 3 follows from (A5) with the equal sign and is plotted in Figure A1b.For , substituting into the right inequality of (A4) leads to the stability conditionBy assumption (35), the value of is negligible compared to , and thus one obtains the second line of stability condition (37). Note that if condition (A6) is violated, numerical instability will occur at , or, equivalently, for . Therefore, it will more readily contaminate the solution than an instability occurring for , considered previously. However, in practice such an instability can occur only for rather large time steps, which should be avoided based on the requirement of accuracy rather than stability of the numerical method.
References
- Laskin, N. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 2000, 268, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Laskin, N. Fractional Schrödinger equation. Phys. Rev. E 2002, 66, 056108. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, K.; Lenzmann, E.; Staffilani, G. On the continuum limit for discrete NLS with long-range lattice interactions. Comm. Math. Phys. 2013, 317, 563–591. [Google Scholar] [CrossRef] [Green Version]
- Cai, D.; Majda, A.J.; McLaughlin, D.W.; Tabak, E.G. Dispersive wave turbulence in one dimension. Physica D 2001, 152/153, 551–572. [Google Scholar] [CrossRef]
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific Publishing Company: Singapore, 2011. [Google Scholar]
- Longhi, S. Fractional Schrödinger equation in optics. Opt. Lett. 2015, 40, 1117–1120. [Google Scholar] [CrossRef]
- Majda, A.J.; McLaughlin, D.W.; Tabak, E.G. A one-dimensional model for dispersive wave turbulence. J. Nonlinear Sci. 1997, 7, 9–44. [Google Scholar] [CrossRef]
- Zakharov, V.; Dias, F.; Pushkarev, A. One-dimensional wave turbulence. Phys. Rep. 2004, 398, 1–65. [Google Scholar] [CrossRef]
- Zaslavsky, G.M.; Edelman, M.; Tarasov, V.E. Dynamics of the chain of forced oscillators with long-range interaction: From synchronization to chaos. Chaos 2007, 17, 043124. [Google Scholar] [CrossRef] [PubMed]
- Jeng, M.; Xu, S.-L.-Y.; Hawkins, E.; Schwarz, J.M. On the nonlocality of the fractional Schrödinger equation. J. Math. Phys. 2010, 51, 062102. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, K.; Zhang, Y. Fractional Schrödinger dynamics and decoherence. Physica D 2016, 332, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Luchko, Y. Fractional Schrödinger equation for a particle moving in a potential well. J. Math. Phys. 2013, 54, 012111. [Google Scholar] [CrossRef]
- Duo, S.; Zhang, Y. Computing the ground and first excited states of the fractional Schrödinger equation in an infinite potential well. Commun. Comput. Phys. 2015, 18, 321–350. [Google Scholar] [CrossRef] [Green Version]
- Klein, C.; Sparber, C.; Markowich, P. Numerical study of fractional nonlinear schrödinger equations. Proc. Math. Phys. Eng. Sci. 2014, 470, 20140364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacob, N. Pseudo-Differential Operators and Markov Processes; Imperial College Press: London, UK, 2011; Volume I. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order; Dover: Mineola, NY, USA, 2006; Volume I. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science: Yverdon-les-Bains, Switzerland, 1993. [Google Scholar]
- Duo, S.; Wang, H.; Zhang, Y. A comparative study on nonlocal diffusion operators related to the fractional Laplacian. Discret. Cont. Dyn. B 2019, 24, 231–256. [Google Scholar] [CrossRef] [Green Version]
- Korabel, N.; Zaslavsky, G.M. Transition to chaos in discrete nonlinear Schrödinger equation with long-range interaction. Physica A 2007, 378, 223–237. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; He, Z.; Conti, C.; Wang, Z.; Hu, Y.; Lei, D.; Li, Y.; Fan, D. Modulational instability in fractional nonlinear Schrödinger equation. Commun. Nonlinear. Sci. Numer. Simulat. 2017, 48, 531–540. [Google Scholar] [CrossRef]
- Dahlby, M.; Owren, B. Plane wave stability of some conservative schemes for the cubic Schrödinger equation. ESAIM Math. Model. Numer. Anal. 2009, 43, 677–687. [Google Scholar] [CrossRef] [Green Version]
- Duo, S.; Zhang, Y. Mass conservative method for solving the fractional nonlinear Schrödinger equation. Comput. Math. Appl. 2016, 71, 2257–2271. [Google Scholar] [CrossRef] [Green Version]
- Faou, E.; Gauckler, L.; Lubich, C. Plane wave stability of the split-step Fourier method for the nonlinear Schrödinger equation. Forum Math. Sigma 2014, 2, e5. [Google Scholar] [CrossRef] [Green Version]
- Lakoba, T.I. Instability of the split-step method for a signal with nonzero central frequency. J. Opt. Soc. Am. B 2013, 30, 3260–3271. [Google Scholar] [CrossRef]
- Weideman, J.A.C.; Herbst, B.M. Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 1986, 23, 485–507. [Google Scholar] [CrossRef]
- Cano, B.; González-Pachón, A. Plane waves numerical stability of some explicit exponential methods for cubic Schrödinger equation. J. Comput. Math. 2016, 34, 385–406. [Google Scholar]
- Bao, W.; Zhang, Y. Dynamics of the ground state and central vortex states in Bose–Einstein condensation. Math. Model. Methods Appl. Sci. 2005, 15, 1863–1896. [Google Scholar] [CrossRef]
- Chen, M.; Zeng, S.; Lu, D.; Hu, W.; Guo, Q. Optical solitons, self-focusing, and wave collapse in a space-fractional Schrödinger equation with a Kerr-type nonlinearity. Phys. Rev. E 2018, 98, 022211. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Sire, Y. A new class of traveling solitons for cubic fractional nonlinear Schrödinger equations. Nonlinearity 2017, 30, 1262–1286. [Google Scholar] [CrossRef] [Green Version]
- Glassner, M.; Yevick, D.; Hermansson, B. High-order generalized propagation techniques. J. Opt. Soc. Am. B 1991, 8, 413–415. [Google Scholar] [CrossRef]
- Yoshida, H. Construction of higher order symplectic integrators. Phys. Lett. A 1990, 150, 262–268. [Google Scholar] [CrossRef]
- Lakoba, T.I. Instability analysis of the split-step Fourier method on the background of a soliton of the nonlinear Schrödinger equation. Numer. Meth. Part. Differ. Equ. 2012, 28, 641–669. [Google Scholar] [CrossRef]
- Jordan, R.; Josserand, C. Self-organization in nonlinear wave turbulence. Phys. Rev. E 2000, 61, 1527–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, Y.; Malomed, B.A.; Mihalache, D.; Zhu, X.; Peng, X.; He, Y. Stabilization of single- and multi-peak solitons in the fractional nonlinear Schrödinger equation with a trapping potential. Chaos Soliton. Fract. 2020, 140, 110222. [Google Scholar] [CrossRef]
0.9 | 0.8 | 0.7 | 0.6 | 0.5 | |
---|---|---|---|---|---|
125 | 120 | 110 | 105 | 80 | |
290 | 255 | 245 | 205 | 85 | |
>500 | 355 | 285 | 240 | 215 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duo, S.; Lakoba, T.I.; Zhang, Y. Dynamics of Plane Waves in the Fractional Nonlinear Schrödinger Equation with Long-Range Dispersion. Symmetry 2021, 13, 1394. https://doi.org/10.3390/sym13081394
Duo S, Lakoba TI, Zhang Y. Dynamics of Plane Waves in the Fractional Nonlinear Schrödinger Equation with Long-Range Dispersion. Symmetry. 2021; 13(8):1394. https://doi.org/10.3390/sym13081394
Chicago/Turabian StyleDuo, Siwei, Taras I. Lakoba, and Yanzhi Zhang. 2021. "Dynamics of Plane Waves in the Fractional Nonlinear Schrödinger Equation with Long-Range Dispersion" Symmetry 13, no. 8: 1394. https://doi.org/10.3390/sym13081394
APA StyleDuo, S., Lakoba, T. I., & Zhang, Y. (2021). Dynamics of Plane Waves in the Fractional Nonlinear Schrödinger Equation with Long-Range Dispersion. Symmetry, 13(8), 1394. https://doi.org/10.3390/sym13081394