A 2D Hyperchaotic Map: Amplitude Control, Coexisting Symmetrical Attractors and Circuit Implementation
<p>The sequence and phase trajectory of map (1) with <span class="html-italic">a</span> = 2.35, <span class="html-italic">b</span> = −1, <span class="html-italic">c</span> = −1, IC = (0.1, 0.1): (<b>a</b>) <span class="html-italic">x</span>(<span class="html-italic">n</span>) sequence, (<b>b</b>) <span class="html-italic">y</span>(<span class="html-italic">n</span>) sequence, and (<b>c</b>) the phase trajectory.</p> "> Figure 2
<p>Dynamical behavior of map (1) with <span class="html-italic">b</span> = −1, c = −1 and initial conditions IC = (0.1, 0.1): (<b>a</b>) Lyapunov exponents, (<b>b</b>) bifurcation diagram.</p> "> Figure 3
<p>Symmetrical coexisting attractors of map (1) with <span class="html-italic">b</span> = −1, <span class="html-italic">c</span> = −1 when (<b>a</b>) <span class="html-italic">a</span> = 2.15, (<b>b</b>) <span class="html-italic">a</span> = 2.23, (<b>c</b>) <span class="html-italic">a</span> = 2.25, (<b>d</b>) <span class="html-italic">a</span> = 2.28, (<b>e</b>) <span class="html-italic">a</span> = 2.3, (<b>f</b>) <span class="html-italic">a</span> = 2.3259.</p> "> Figure 4
<p>Signals and phase trajectories of map (1) with <span class="html-italic">a</span> = 2.35, <span class="html-italic">c</span> = −1, IC = (−0.1, −0.1) under different rescaling parameter <span class="html-italic">b</span>: (<b>a</b>) <span class="html-italic">x</span>(<span class="html-italic">n</span>), (<b>b</b>) <span class="html-italic">y</span>(<span class="html-italic">n</span>), and (<b>c</b>) phase trajectory.</p> "> Figure 5
<p>Dynamical behavior of map (1) with <span class="html-italic">a</span> = 2.35, <span class="html-italic">c</span> = −1, IC = (−0.1, −0.1) when <span class="html-italic">b</span> varies in [–10, 0]: (<b>a</b>) Lyapunov exponents, (<b>b</b>) average variables of |<span class="html-italic">x|</span> and |<span class="html-italic">y|</span>.</p> "> Figure 6
<p>Feature of amplitude control in map (1) with <span class="html-italic">a</span> = 2.35, <span class="html-italic">b</span> = −1 and IC = (−0.1, −0.1) for the scaling variable <span class="html-italic">c</span>: (<b>a</b>) <span class="html-italic">x</span> signal waveform (<b>b</b>) phase trajectories.</p> "> Figure 7
<p>Dynamical behavior of map (1) with <span class="html-italic">a</span> = 2.35, <span class="html-italic">b</span> = −1 and IC = (−0.1, −0.1), when <span class="html-italic">c</span> varies in (−15, 0]: (<b>a</b>) Lyapunov exponents, (<b>b</b>) average value of the state variable <span class="html-italic">x</span>.</p> "> Figure 8
<p>Symmetric basins of attraction for map (1) with <span class="html-italic">a</span> = 2.35, <span class="html-italic">b</span> = −1, <span class="html-italic">c</span> = 1, Dark turquoise for IC = (0.1, 0.1), and Light cyan is for IC = (−0.1, −0.1).</p> "> Figure 9
<p>Coexisting bifurcation diagrams of map (1) with different initial conditions and <span class="html-italic">a</span> = 2.35, <span class="html-italic">c</span> = −1.</p> "> Figure 10
<p>Coexisting symmetric attractors of map (1) with <span class="html-italic">a</span> = 2.35, <span class="html-italic">c</span> = −1: (<b>a</b>) <span class="html-italic">b</span> = −1, and (<b>b</b>) <span class="html-italic">b</span> = 1.</p> "> Figure 11
<p>Signal waveforms of map (1) with <span class="html-italic">a</span> = 2.35, <span class="html-italic">b</span> = −1, <span class="html-italic">c</span> = −1, under various initial values: (<b>a</b>) the state variable <span class="html-italic">x</span>, (<b>b</b>) the state variable <span class="html-italic">y</span>.</p> "> Figure 12
<p>Symmetric attractors of map (1) at different amplitude parameters: (<b>a</b>) total amplitude control with <span class="html-italic">c</span> = −1, and (<b>b</b>) partial amplitude control with <span class="html-italic">b</span> = −1.</p> "> Figure 13
<p>Experimental platform.</p> "> Figure 14
<p>Two modes of the symmetric coexisting attractors in map (1) from the oscilloscope with <span class="html-italic">a</span> = 2.35, <span class="html-italic">c</span> = −1, (<b>a</b>) <span class="html-italic">b</span> = −1, (<b>b</b>) <span class="html-italic">b</span> = 1.</p> ">
Abstract
:1. Introduction
2. A New 2D Hyperchaotic Map and Its Dynamic Analysis
2.1. Model and Its Fixed Points Analysis
2.2. Bifurcation Analysis
3. Amplitude Control
3.1. Total Amplitude Control
3.2. Partial Amplitude Control
4. Bistability with Coexisting Symmetrical Attractors
5. Circuit Implementation
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, F.; Mou, J.; Liu, J.; Ma, C.; Yan, H. Characteristic analysis of the fractional-order hyperchaotic complex system and its image encryption application. Signal Process. 2020, 169, 107373. [Google Scholar] [CrossRef]
- Peng, G.; Min, F. Multistability analysis, circuit implementations and application in image encryption of a novel memristive chaotic circuit. Nonlinear Dyn. 2017, 90, 1607–1625. [Google Scholar] [CrossRef]
- Deng, J.; Zhou, M.; Wang, C.; Wang, S.; Xu, C. Image segmentation encryption algorithm with chaotic sequence generation participated by cipher and multi-feedback loops. Multimed. Tools Appl. 2021, 1–20. [Google Scholar] [CrossRef]
- Zeng, J.; Wang, C. A novel hyperchaotic image encryption system based on particle swarm optimization algorithm and cellular automata. Secur. Commun. Netw. 2021, 2021, 6675565. [Google Scholar] [CrossRef]
- Shah, S.A.; Ahmad, J.; Masood, F.; Shah, S.Y.; Pervaiz, H.; Taylor, W.; Abbasi, Q.H. Privacy-Preserving Wandering Behavior Sensing in Dementia Patients Using Modified Logistic and Dynamic Newton Leipnik Maps. IEEE Sens. J. 2021, 21, 3669–3679. [Google Scholar] [CrossRef]
- Khan, J.S.; Boulila, W.; Ahmad, J.; Rubaiee, S.; Rehman, A.U.; Alroobaea, R.; Buchanan, W.J. DNA and plaintext dependent chaotic visual selective image encryption. IEEE Access 2020, 8, 159732–159744. [Google Scholar] [CrossRef]
- Wang, S.; Kuang, J.; Li, J.; Luo, Y.; Lu, H.; Hu, G. Chaos-based secure communications in a large community. Phys. Rev. E 2002, 66, 065202. [Google Scholar] [CrossRef]
- Kocarev, L.; Halle, K.S.; Eckert, K.; Chua, L.O.; Parlitz, U. Experimental demonstration of secure communications via chaotic synchronizat ion. Int. J. Bifurc. Chaos 1992, 2, 709–713. [Google Scholar] [CrossRef]
- Li, C.; Liao, X.; Wong, K. Lag synchronization of hyperchaos with application to secure communications. Chaos Solitons Fractals 2005, 23, 183–193. [Google Scholar] [CrossRef]
- Li, C.; Sprott, J.C. Amplitude control approach for chaotic signals. Nonlinear Dyn. 2013, 73, 1335–1341. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Sprott, J.C. Finding coexisting attractors using amplitude control. Nonlinear Dyn. 2014, 78, 2059–2064. [Google Scholar] [CrossRef]
- Wu, Q.; Hong, Q.; Liu, X.; Wang, X.; Zeng, Z. A novel amplitude control method for constructing nested hidden multi-butterfly and multiscroll chaotic attractors. Chaos Solitons Fractals 2020, 134, 109727. [Google Scholar] [CrossRef]
- Zang, H.; Gu, Z.; Lei, T.; Li, C.; Jafari, S. Coexisting chaotic attractors in a memristive system and their amplitude control. Pramana 2020, 94, 1–9. [Google Scholar] [CrossRef]
- Li, C.; Sprott, J.C.; Xing, H. Constructing chaotic systems with conditional symmetry. Nonlinear Dyn. 2017, 87, 1351–1358. [Google Scholar] [CrossRef]
- Lu, T.; Li, C.; Jafari, S.; Min, F. Controlling coexisting attractors of conditional symmetry. Int. J. Bifurc. Chaos 2019, 29, 1950207. [Google Scholar] [CrossRef]
- Kengne, L.K.; Kengne, J.; Fotsin, H.B. The effects of symmetry breaking on the dynamics of a simple autonomous jerk circuit. Analog Integr. Circuits Signal Process. 2019, 101, 489–512. [Google Scholar] [CrossRef]
- Zhang, X.; Li, C.; Lei, T.; Liu, Z.; Tao, C. A symmetric controllable hyperchaotic hidden attractor. Symmetry 2020, 12, 550. [Google Scholar] [CrossRef] [Green Version]
- Leutcho, G.D.; Kengne, J.; Kengne, L.K. Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity: Chaos, antimonotonicity and a plethora of coexisting attractors. Chaos Solitons Fractals 2018, 107, 67–87. [Google Scholar] [CrossRef]
- Lai, Q.; Chen, C.; Zhao, X.W.; Kengne, J.; Volos, C. Constructing chaotic system with multiple coexisting attractors. IEEE Access 2019, 7, 24051–24056. [Google Scholar] [CrossRef]
- Bao, H.; Hua, Z.; Wang, N.; Zhu, L.; Chen, M.; Bao, B. Initials-Boosted Coexisting Chaos in a 2-D Sine Map and Its Hardware Implementation. IEEE Trans. Ind. Inform. 2020, 17, 1132–1140. [Google Scholar] [CrossRef]
- Wang, Z.; Abdolmohammadi, H.R.; Alsaadi, F.E.; Hayat, T.; Pham, V.T. A new oscillator with infinite coexisting asymmetric attractors. Chaos Solitons Fractals 2018, 110, 252–258. [Google Scholar] [CrossRef]
- Li, C.L.; Li, W.; Zhang, J.; Xie, Y.X.; Zhao, Y.B. Amplitude-Phase Modulation, Topological Horseshoe and Scaling Attractor of a Dynamical System. Commun. Theor. Phys. 2016, 66, 297. [Google Scholar] [CrossRef]
- Li, C.; Sprott, J.C.; Yuan, Z.; Li, H. Constructing chaotic systems with total amplitude control. Int. J. Bifurc. Chaos 2015, 25, 1530025. [Google Scholar] [CrossRef]
- Hu, W.; Akgul, A.; Li, C.; Zheng, T.; Li, P. A switchable chaotic oscillator with two amplitude–frequency controllers. J. Circuits Syst. Comput. 2017, 26, 1750158. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Chen, G. Diagnosing multistability by offset boosting. Nonlinear Dyn. 2017, 90, 1335–1341. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, Y.; Li, Z.; Zhou, C. Hidden extreme multistability, antimonotonicity and offset boosting control in a novel fractional-order hyperchaotic system without equilibrium. Int. J. Bifurc. Chaos 2018, 28, 1850167. [Google Scholar] [CrossRef]
- Li, C.; Sun, J.; Lu, T.; Lei, T. Symmetry evolution in chaotic system. Symmetry 2020, 12, 574. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Ren, X.; Wu, H.; Xu, Q.; Bao, B. Interpreting initial offset boosting via reconstitution in integral domain. Chaos Solitons Fractals 2020, 131, 109544. [Google Scholar] [CrossRef]
- Bao, B.C.; Li, H.Z.; Zhu, L.; Zhang, X.; Chen, M. Initial-switched boosting bifurcations in 2D hyperchaotic map. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 033107. [Google Scholar] [CrossRef]
- Li, H.; Bao, H.; Zhu, L.; Bao, B.; Chen, M. Extreme Multistability in Simple Area-Preserving Map. IEEE Access 2020, 8, 175972–175980. [Google Scholar] [CrossRef]
- Zhang, L.P.; Liu, Y.; Wei, Z.C.; Jiang, H.B.; Bi, Q.S. A novel class of two-dimensional chaotic maps with infinitely many coexisting attractors. Chin. Phys. B 2020, 29, 060501. [Google Scholar] [CrossRef]
- Yan, B.; He, S.; Sun, K.; Wang, S. Complexity and Multistability in the Centrifugal Flywheel Governor System with Stochastic Noise. IEEE Access 2020, 8, 30092–30103. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, B.; Zhou, Y. Sine-transform-based chaotic system with FPGA implementation. IEEE Trans. Ind. Electron. 2017, 65, 2557–2566. [Google Scholar] [CrossRef]
- Zhang, X.; Li, C.; Min, F.; Iu, H.H.C.; Gao, H. Broken Symmetry in a Memristive Chaotic Oscillator. IEEE Access 2020, 8, 69222–69229. [Google Scholar] [CrossRef]
- Zhang, X.; Li, C.; Chen, Y.; Herbert, H.C.; Lei, T. A memristive chaotic oscillator with controllable amplitude and frequency. Chaos Solitons Fractals 2020, 139, 110000. [Google Scholar] [CrossRef]
a | Phase Trajectory Type | LEs |
---|---|---|
a = 2.15 | quasi-period | (0, −0.1914) |
a = 2.23 | period | (−0.002709, −0.1558) |
a = 2.25 | chaos | (0.05989, −0.1648) |
a = 2.28 | chaos | (0.1041, −0.01998) |
a = 2.3 | hyperchaos | (0.1403, 0.07291) |
a = 2.3259 | chaos | (0.04464, −0.02) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Li, C.; Lu, X.; Lei, T.; Zhao, Y. A 2D Hyperchaotic Map: Amplitude Control, Coexisting Symmetrical Attractors and Circuit Implementation. Symmetry 2021, 13, 1047. https://doi.org/10.3390/sym13061047
Zhou X, Li C, Lu X, Lei T, Zhao Y. A 2D Hyperchaotic Map: Amplitude Control, Coexisting Symmetrical Attractors and Circuit Implementation. Symmetry. 2021; 13(6):1047. https://doi.org/10.3390/sym13061047
Chicago/Turabian StyleZhou, Xuejiao, Chunbiao Li, Xu Lu, Tengfei Lei, and Yibo Zhao. 2021. "A 2D Hyperchaotic Map: Amplitude Control, Coexisting Symmetrical Attractors and Circuit Implementation" Symmetry 13, no. 6: 1047. https://doi.org/10.3390/sym13061047
APA StyleZhou, X., Li, C., Lu, X., Lei, T., & Zhao, Y. (2021). A 2D Hyperchaotic Map: Amplitude Control, Coexisting Symmetrical Attractors and Circuit Implementation. Symmetry, 13(6), 1047. https://doi.org/10.3390/sym13061047