An Investigation of Social Distancing and Quantity of Luggage Impacts on the Three Groups Reverse Pyramid Boarding Method
<p>Modified Reverse Pyramid Half-zone method with 4 boarding groups without considering social distancing.</p> "> Figure 2
<p>Reverse Pyramid boarding adapted for social distancing and to minimize health risks.</p> "> Figure 3
<p>The seat positions pointed out by the <span class="html-italic">g1</span> and <span class="html-italic">g2a</span> variables for a 30-row airplane.</p> "> Figure 4
<p>Screen capture presenting the movement of the agents down the aisle.</p> "> Figure 5
<p>Screen capture of agent-based model graphical user interface (GUI) during simulation.</p> "> Figure 6
<p>The performance (in colors) of the <span class="html-italic">g1, g2a</span> combinations when the objective function is determined by weights <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> </mrow> </semantics></math> = 100%, <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>2</mn> </msub> </mrow> </semantics></math> = 0%, and <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>3</mn> </msub> </mrow> </semantics></math> = 0%, for the S1–S6 luggage scenarios, 1 m aisle social distance (the color scale is determined by the average boarding time expressed in seconds and listed in the right side of each figure).</p> "> Figure 6 Cont.
<p>The performance (in colors) of the <span class="html-italic">g1, g2a</span> combinations when the objective function is determined by weights <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> </mrow> </semantics></math> = 100%, <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>2</mn> </msub> </mrow> </semantics></math> = 0%, and <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>3</mn> </msub> </mrow> </semantics></math> = 0%, for the S1–S6 luggage scenarios, 1 m aisle social distance (the color scale is determined by the average boarding time expressed in seconds and listed in the right side of each figure).</p> "> Figure 7
<p>The performance (in colors) of the <span class="html-italic">g1</span> and <span class="html-italic">g2a</span> combinations when the objective function is determined by weights <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> </mrow> </semantics></math> = 100%, <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>2</mn> </msub> </mrow> </semantics></math> = 0%, and <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>3</mn> </msub> </mrow> </semantics></math> = 0%, for the S7 luggage scenario, 1 m aisle social distance.</p> "> Figure 8
<p>The optimal solution for C1 as a function of aisle social distance and luggage scenarios.</p> "> Figure 9
<p>The best-performing Reverse Pyramid scheme for 2 m aisle social distance, S1, <span class="html-italic">g1</span> = 26, <span class="html-italic">g2a</span> = 26 for weights <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> </mrow> </semantics></math> = 100%, <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>2</mn> </msub> </mrow> </semantics></math> = 0%, and <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>3</mn> </msub> </mrow> </semantics></math> = 0%.</p> "> Figure 10
<p>The best-performing Reverse Pyramid scheme for 2 m aisle social distance, S7, <span class="html-italic">g1</span> = 29, <span class="html-italic">g2a</span> = 25 for weights <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> </mrow> </semantics></math> = 100%, <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>2</mn> </msub> </mrow> </semantics></math> = 0%, and <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>3</mn> </msub> </mrow> </semantics></math> = 0%.</p> "> Figure 11
<p>The best-performing Reverse Pyramid scheme for 1 m aisle social distance, S7, <span class="html-italic">g1</span> = 26, <span class="html-italic">g2a</span> = 23 for weights <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> </mrow> </semantics></math><sub>1</sub> = 100%, <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>2</mn> </msub> </mrow> </semantics></math> = 0%, and <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>3</mn> </msub> </mrow> </semantics></math> = 0%.</p> "> Figure 12
<p>The performance (in colors) of the <span class="html-italic">g1</span> and <span class="html-italic">g2a</span> combinations when the objective function is determined by weights <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> </mrow> </semantics></math> = 0%, <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>2</mn> </msub> </mrow> </semantics></math> = 100%, and <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>3</mn> </msub> </mrow> </semantics></math> = 0%, for the S7 luggage scenario, 1 m aisle social distance (the color scale is determined by the average aisle seat risk expressed in seconds and listed in the right side of the figure).</p> "> Figure 13
<p>The performance (in colors) of the <span class="html-italic">g1</span> and <span class="html-italic">g2a</span> combinations when the objective function is determined by weights <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> </mrow> </semantics></math> = 0%, <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>2</mn> </msub> </mrow> </semantics></math> = 0%, and <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>3</mn> </msub> </mrow> </semantics></math> = 100%, for the S7 luggage scenario, 1 m aisle social distance (the color scale is determined by the average window seat risk expressed in seconds and listed in the right side of the figure).</p> "> Figure 14
<p>The performance (in colors) of the <span class="html-italic">g1</span> and <span class="html-italic">g2a</span> combinations when the objective function is determined by weights <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> </mrow> </semantics></math> = 60%, <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>2</mn> </msub> </mrow> </semantics></math> = 35%, and <math display="inline"><semantics> <mrow> <msub> <mi>w</mi> <mn>3</mn> </msub> </mrow> </semantics></math> = 5%, for the S7 luggage scenario, 1 m aisle social distance (the color scale is determined by the average value of the evaluating function expressed in seconds and listed in the right side of the figure).</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Assumptions, Metrics, and Methods for Passenger Boarding Simulation
- g1 representing the number of window seats allocated to the first group on each side of the aisle, and
- g2a representing the number of aisle seats allocated to the second group on each side of the aisle.
- g1 > 0, g2a > 0, integers
- g2a ≤ g1
- g1 ≤ n − 1, with n = the number of rows in the airplane.
3.1. Assumptions for Passengers’ Social Distancing
3.2. Assumptions for Carry-on Luggage Quantities and Luggage Storage Times
3.3. Metrics: Boarding Performance Indicators
- p = passenger advancing towards his or her seat
- r = row
- RowSitp = row in which passenger p has a seat
- RowTimepr = time that passenger p spends in row r
- p′ = passenger boarding before passenger p
- AisleSeatp′r = 1 if passenger p′ has an aisle seat in row r, =0 otherwise
- WindowSeatp′r = 1 if passenger p′ has a window seat in row r, =0 otherwise
3.4. Agent-Based Model
3.5. Local Grid Search and Full Grid Search
4. Numerical Simulation—Scenarios and Results
4.1. Simulation Results for C1
4.2. Simulation Results for C2
4.3. Simulation Results for C3
4.4. Simulation Results for C4
5. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Powley, T.; Peel, M.; Hollinger, P. How Safe Is Air Travel during Coronavirus Pandemic? Available online: https://www.ft.com/content/b6a40987-4272-4b51-addb-f30c8066ce2c (accessed on 1 August 2020).
- IATA COVID-19 Passenger Survey. Available online: https://www.iata.org/en/publications/store/covid-passenger-survey/ (accessed on 1 August 2020).
- Harrington, J. Southwest Changes Boarding Process: What You Need to Know. Available online: https://www.mercurynews.com/2020/05/01/southwest-airlines-changes-boarding-process-what-you-need-to-know/ (accessed on 19 May 2020).
- Future Travel Experience How COVID-19 Could Change the End-to-End Passenger Experience Forever. Available online: https://www.futuretravelexperience.com/2020/04/how-covid-19-could-change-end-to-end-passenger-experience/ (accessed on 14 May 2020).
- Ash, L. What Air Travel Might Look Like Post Covid. Available online: https://simpleflying.com/what-air-travel-might-look-like-post-covid/ (accessed on 14 May 2020).
- Delta Air Lines Delta Blocking Middle Seats, Pausing Automatic Advance Upgrades and More to Enable More Space for Safer Travel. Available online: https://news.delta.com/delta-blocking-middle-seats-pausing-automatic-advance-upgrades-and-more-enable-more-space-safer (accessed on 19 May 2020).
- Walton, J. Will Empty Middle Seats Help Social Distancing on Planes? Available online: https://www.bbc.com/worklife/article/20200422-when-can-we-start-flying-again (accessed on 14 May 2020).
- Dan, A. In a Twist on Loyalty Programs, Emirates Is Promising Travelers a Free Funeral If Infected with Covid. Available online: https://www.forbes.com/sites/avidan/2020/08/02/in-a-twist-on-loyalty-programs-emirates-is-promising-travelers-a-free-funeral-if-infected-with-covid-19/?fbclid=IwAR1LuM7VTWxYlsbn3ZUtWhuMQfjDEJGLQktDai8YZa8SX2GGNI0jwC7qKZs#3cb21aef43e3 (accessed on 5 August 2020).
- Alitalia Flying Safely. Available online: https://www.alitalia.com/en_en/fly-alitalia/news-and-activities/news/info-flights/flying-safely.html?fbclid=IwAR1MrtLmqRdn-I9J-IYmYMCksLfeT-vTl7tfdO8DVZyszu_mkrvjkBz5FV4 (accessed on 7 July 2020).
- Topham, G. UK Air Passengers Urged Not to Take Hand Luggage on Planes; The Guardian: New York, NY, USA, 2020. [Google Scholar]
- Delcea, C.; Milne, R.J.; Cotfas, L.-A. Determining the Number of Passengers for Each of Three Reverse Pyramid Boarding Groups with COVID-19 Flying Restrictions. Symmetry 2020, 12, 2038. [Google Scholar] [CrossRef]
- Turkish Airlines Travel and Coronavirus: Amended Cabin Baggage Rules. Available online: https://www.turkishairlines.com/en-int/any-questions/what-are-cabin-baggage-rules-during-the-coronavirus-process/ (accessed on 1 August 2020).
- Thelocal.it Italy Bans Hand Luggage on Flights “for Health Reasons”. Available online: https://www.thelocal.it/20200626/italy-bans-all-hand-luggae-on-flights-for-safety-reasons (accessed on 5 August 2020).
- IATA Restarting Aviation Following COVID-19. Available online: https://www.iata.org/contentassets/f1163430bba94512a583eb6d6b24aa56/covid-medical-evidence-for-strategies-200423.pdf (accessed on 31 May 2020).
- Milne, R.J.; Delcea, C.; Cotfas, L.-A.; Ioanas, C. Evaluation of Boarding Methods Adapted for Social Distancing When Using Apron Buses. IEEE Access 2020, 8, 151650–151667. [Google Scholar] [CrossRef]
- Milne, R.J.; Cotfas, L.-A.; Delcea, C.; Crăciun, L.; Molănescu, A.-G. Adapting the Reverse Pyramid Airplane Boarding Method for Social Distancing in Times of COVID-19. PLoS ONE 2020, 15, e0242131. [Google Scholar] [CrossRef] [PubMed]
- Marelli, S.; Mattocks, G.; Merry, R. The Role of Computer Simulation in Reducing Airplane Turnaround Time. Boeing Aero Mag. 1998, 1. Available online: https://www.boeing.com/commercial/aeromagazine/aero_01/textonly/t01txt.html (accessed on 14 May 2020).
- Nyquist, D.C.; McFadden, K.L. A Study of the Airline Boarding Problem. J. Air Transp. Manag. 2008, 14, 197–204. [Google Scholar] [CrossRef]
- Steiner, A.; Philipp, M. Speeding up the Airplane Boarding Process by Using Pre-Boarding Areas. In Proceedings of the Swiss Transport Research Conference, Ascona, Switzerland, 9–11 September 2009. [Google Scholar]
- Soolaki, M.; Mahdavi, I.; Mahdavi-Amiri, N.; Hassanzadeh, R.; Aghajani, A. A New Linear Programming Approach and Genetic Algorithm for Solving Airline Boarding Problem. Appl. Math. Model. 2012, 36, 4060–4072. [Google Scholar] [CrossRef]
- Tang, T.-Q.; Yang, S.-P.; Ou, H.; Chen, L.; Huang, H.-J. An Aircraft Boarding Model with the Group Behavior and the Quantity of Luggage. Transp. Res. Part C Emerg. Technol. 2018, 93, 115–127. [Google Scholar] [CrossRef]
- van den Briel, M.H.L.; Villalobos, J.R.; Hogg, G.L.; Lindemann, T.; Mulé, A.V. America West Airlines Develops Efficient Boarding Strategies. Interfaces 2005, 35, 191–201. [Google Scholar] [CrossRef]
- Milne, R.J.; Kelly, A.R. A New Method for Boarding Passengers onto an Airplane. J. Air Transp. Manag. 2014, 34, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Milne, R.J.; Delcea, C.; Cotfas, L.-A.; Salari, M. New Methods for Two-Door Airplane Boarding Using Apron Buses. J. Air Transp. Manag. 2019, 80, 101705. [Google Scholar] [CrossRef]
- Delcea, C.; Cotfas, L.-A.; Paun, R. Agent-Based Evaluation of the Airplane Boarding Strategies’ Efficiency and Sustainability. Sustainability 2018, 10, 1879. [Google Scholar] [CrossRef] [Green Version]
- Breuer, A. JetBlue to Unveil New Boarding Process|Frequent Business Traveler. Available online: http://www.frequentbusinesstraveler.com/2017/10/jetblue-to-unveil-new-boarding-process/ (accessed on 4 August 2020).
- Ozmec-Ban, M.; Babić, R.Š.; Modić, A. Airplane Boarding Strategies for Reducing Turnaround Time. In Proceedings of the 18th International Conference on Transport Science ICTS 2018, Portorož, Slovenia, 14–15 June 2018; pp. 1–7. [Google Scholar]
- Steffen, J.H.; Hotchkiss, J. Experimental Test of Airplane Boarding Methods. J. Air Transp. Manag. 2012, 18, 64–67. [Google Scholar] [CrossRef] [Green Version]
- Steffen, J.H. Optimal Boarding Method for Airline Passengers. J. Air Transp. Manag. 2008, 14, 146–150. [Google Scholar] [CrossRef] [Green Version]
- Steffen, J.H. A Statistical Mechanics Model for Free-for-All Airplane Passenger Boarding. Am. J. Phys. 2008, 76, 1114–1119. [Google Scholar] [CrossRef] [Green Version]
- Van Landeghem, H.; Beuselinck, A. Reducing Passenger Boarding Time in Airplanes: A Simulation Based Approach. Eur. J. of Oper. Res. 2002, 142, 294–308. [Google Scholar] [CrossRef]
- Qiang, S.-J.; Jia, B.; Xie, D.-F.; Gao, Z.-Y. Reducing Airplane Boarding Time by Accounting for Passengers’ Individual Properties: A Simulation Based on Cellular Automaton. J. Air Transp. Manag. 2014, 40, 42–47. [Google Scholar] [CrossRef]
- Ren, X.; Zhou, X.; Xu, X. A New Model of Luggage Storage Time While Boarding an Airplane: An Experimental Test. J. Air Transp. Manag. 2020, 84, 101761. [Google Scholar] [CrossRef]
- Kierzkowski, A.; Kisiel, T. The Human Factor in the Passenger Boarding Process at the Airport. Procedia Eng. 2017, 187, 348–355. [Google Scholar] [CrossRef]
- Notomista, G.; Selvaggio, M.; Sbrizzi, F.; Di Maio, G.; Grazioso, S.; Botsch, M. A Fast Airplane Boarding Strategy Using Online Seat Assignment Based on Passenger Classification. J. Air Transp. Manag. 2016, 53, 140–149. [Google Scholar] [CrossRef]
- Ferrari, P.; Nagel, K. Robustness of Efficient Passenger Boarding Strategies for Airplanes. Transp. Res. Rec. J. Transp. Res. Board 2005, 1915, 44–54. [Google Scholar] [CrossRef]
- Hutter, L.; Jaehn, F.; Neumann, S. Influencing Factors on Airplane Boarding Times. Omega 2018, 87, 177–190. [Google Scholar] [CrossRef]
- Bazargan, M. A Linear Programming Approach for Aircraft Boarding Strategy. Eur. J. Oper. Res. 2007, 183, 394–411. [Google Scholar] [CrossRef]
- Kuo, C.-C. An Improved Zero-One Linear Programming Model for the Plane Boarding Problem. In Applications of Management Science; Emerald Group Publishing Limited: Somerville, MA, USA, 2015; Volume 17, pp. 53–69. [Google Scholar]
- Ren, X.; Xu, X. Experimental Analyses of Airplane Boarding Based on Interference Classification. J. Air Trans. Manag. 2018, 71, 55–63. [Google Scholar] [CrossRef]
- Schultz, M. The Seat Interference Potential as an Indicator for the Aircraft Boarding Progress. SAE Tech. Pap. 2017. [Google Scholar] [CrossRef]
- Delcea, C.; Cotfas, L.-A.; Paun, R. Airplane Boarding Strategies Using Agent-Based Modeling and Grey Analysis. In Computational Collective Intelligence; Nguyen, N.T., Pimenidis, E., Khan, Z., Trawiński, B., Eds.; Springer: Cham, Switzerland, 2018; Volume 11055, pp. 329–339. ISBN 978-3-319-98442-1. [Google Scholar]
- Milne, R.J.; Delcea, C.; Cotfas, L.-A. Airplane Boarding Methods That Reduce Risk from COVID-19. Saf. Sci. 2021, 134, 105061. [Google Scholar] [CrossRef]
- Milne, R.J.; Salari, M.; Kattan, L. Robust Optimization of Airplane Passenger Seating Assignments. Aerospace 2018, 5, 80. [Google Scholar] [CrossRef] [Green Version]
- Milne, R.J.; Salari, M. Optimization of Assigning Passengers to Seats on Airplanes Based on Their Carry-on Luggage. J. Air Transp. Manag. 2016, 54, 104–110. [Google Scholar] [CrossRef]
- Wittmann, J. Customer-Oriented Optimization of the Airplane Boarding Process. J. Air Transp. Manag. 2019, 76, 31–39. [Google Scholar] [CrossRef]
- Sadeghi Lahijani, M.; Islam, T.; Srinivasan, A.; Namilae, S. Constrained Linear Movement Model (CALM): Simulation of Passenger Movement in Airplanes. PLoS ONE 2020, 15, e0229690. [Google Scholar] [CrossRef] [Green Version]
- Islam, T.; Lahijani, M.S.; Srinivasan, A.; Namilae, S.; Mubayi, A.; Scotch, M. From Bad to Worse: Airline Boarding Changes in Response to COVID-19. arXiv 2020, arXiv:2006.06403 [physics]. [Google Scholar]
- Derjany, P.; Namilae, S.; Liu, D.; Srinivasan, A. Multiscale Model for the Optimal Design of Pedestrian Queues to Mitigate Infectious Disease Spread. PLoS ONE 2020, 15, e0235891. [Google Scholar] [CrossRef]
- Schultz, M. Fast Aircraft Turnaround Enabled by Reliable Passenger Boarding. Aerospace 2018, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Schultz, M. A Metric for the Real-Time Evaluation of the Aircraft Boarding Progress. Transp. Res. Part C Emerg. Technol. 2018, 86, 467–487. [Google Scholar] [CrossRef]
- Schultz, M. Dynamic Change of Aircraft Seat Condition for Fast Boarding. Transp. Res. Part C Emerg. Technol. 2017, 85, 131–147. [Google Scholar] [CrossRef]
- World Health Organization. Coronavirus Disease (COVID-19). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 12 December 2020).
- Schultz, M.; Soolaki, M. Analytical Approach to Solve the Problem of Aircraft Passenger Boarding during the Coronavirus Pandemic; Preprint under Journal Review. Available online: https://www.researchgate.net/publication/343390376_Analytical_approach_to_solve_the_problem_of_aircraft_passenger_boarding_during_the_coronavirus_pandemic (accessed on 4 August 2020).
- Salari, M.; Milne, R.J.; Delcea, C.; Kattan, L.; Cotfas, L.-A. Social Distancing in Airplane Seat Assignments. J. Air Trans. Manag. 2020, 89, 101915. [Google Scholar] [CrossRef]
- Schultz, M.; Fuchte, J. Evaluation of Aircraft Boarding Scenarios Considering Reduced Transmissions Risks. Sustainability 2020, 12, 5329. [Google Scholar] [CrossRef]
- Cotfas, L.-A.; Delcea, C.; Milne, R.J.; Salari, M. Evaluating Classical Airplane Boarding Methods Considering COVID-19 Flying Restrictions. Symmetry 2020, 12, 1087. [Google Scholar] [CrossRef]
- De Vos, J. The Effect of COVID-19 and Subsequent Social Distancing on Travel Behavior. Transp. Res. Interdiscip. Perspect. 2020, 5, 100121. [Google Scholar] [CrossRef]
- WHO Advice for Public. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public (accessed on 31 May 2020).
- Barnett, A. Covid-19 Risk among Airline Passengers: Should the Middle Seat Stay Empty? Public and Global Health: Atlanta, GA, USA, 2020. [Google Scholar]
- Porterfield, C. Leaving Airplane Middle Seats Empty Could Cut Coronavirus Risk Almost in Half, a Study Says. Available online: https://www.forbes.com/sites/carlieporterfield/2020/07/11/leaving-airplane-middle-seats-empty-could-cut-coronavirus-risk-almost-in-half-a-study-says/ (accessed on 1 August 2020).
- Delcea, C.; Milne, R.J.; Cotfas, L.-A.; Craciun, L.; Molanescu, A.G. Methods for Accelerating the Airplane Boarding Process in the Presence of Apron Buses. IEEE Access 2019, 7, 134372–134387. [Google Scholar] [CrossRef]
- Audenaert, J.; Verbeeck, K.; Berghe, G. Multi-Agent Based Simulation for Boarding. In Proceedings of the 21st Benelux Conference on Artificial Intelligence, Eindhoven, The Netherlands, 29–30 October 2009; pp. 3–10. [Google Scholar]
- Milne, R.J.; Cotfas, L.-A.; Delcea, C.; Salari, M.; Craciun, L.; Molanescu, A.G. Airplane Boarding Method for Passenger Groups When Using Apron Buses. IEEE Access 2020, 8, 18019–18035. [Google Scholar] [CrossRef]
- Wilensky, U.; Rand, W. An Introduction to Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex Systems with NetLogo; The MIT Press: Cambridge, MA, USA, 2015; ISBN 978-0-262-73189-8. [Google Scholar]
- Ponsiglione, C.; Roma, V.; Zampella, F.; Zollo, G. The Fairness/Efficiency Issue Explored Through El Farol Bar Model. In Scientific Methods for the Treatment of Uncertainty in Social Sciences; Gil-Aluja, J., Terceño-Gómez, A., Ferrer-Comalat, J.C., Merigó-Lindahl, J.M., Linares-Mustarós, S., Eds.; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2015; Volume 377, pp. 309–327. ISBN 978-3-319-19703-6. [Google Scholar]
- Schultz, M. Field Trial Measurements to Validate a Stochastic Aircraft Boarding Model. Aerospace 2018, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, R. A Dynamic Cellular Automaton Model for Evacuation Process with Obstacles. Saf. Sci. 2011, 49, 315–323. [Google Scholar] [CrossRef]
Scenario | Percentages of Bags Carried by the Passengers | ||||
---|---|---|---|---|---|
1 Large and 1 Small Bag | 1 Large Bag | 2 Small Bags | 1 Small Bag | 0 Bag | |
S1 | 70% | 10% | 0% | 10% | 10% |
S2 | 50% | 10% | 5% | 20% | 15% |
S3 | 30% | 15% | 10% | 20% | 25% |
S4 | 15% | 15% | 10% | 25% | 35% |
S5 | 10% | 10% | 10% | 10% | 60% |
S6 | 5% | 5% | 5% | 5% | 80% |
S7 | 0% | 0% | 0% | 0% | 100% |
Case | Weights | Optimal Solution [11] | |||
---|---|---|---|---|---|
g1 | g2a | ||||
C1 | 100% | 0% | 0% | 25 | 24 |
C2 | 0% | 100% | 0% | 15 | 15 |
C3 | 0% | 0% | 100% | 15 | 15 |
C4 | 60% | 35% | 5% | 16 | 16 |
Aisle Social Distance | Luggage Scenarios | ||||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | |
1 m | (25, 24) | (25, 24) | (25, 23) | (25, 23) | (26, 23) | (26, 23) | (26, 23) |
1.5 m | (25, 25) | (26, 25) | (27, 24) | (27, 24) | (27, 24) | (27, 24) | (27, 24) |
2 m | (26, 26) | (26, 26) | (27, 25) | (27, 25) | (27, 25) | (28, 25) | (29, 25) |
Aisle Social Distance | Luggage Scenarios | ||||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | |
1 m | 891.2 | 853.9 | 815.0 | 778.3 | 725.9 | 652.4 | 504.3 |
1.5 m | 1157.4 | 1110.4 | 1061.9 | 1015.4 | 941.4 | 843.4 | 671.7 |
2 m | 1402.5 | 1351.5 | 1295.6 | 1240.7 | 1148.2 | 1028.0 | 838.3 |
Aisle Social Distance | Luggage Scenarios | ||||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | |
1 m | 2338.0 | 2227.8 | 2000.1 | 1889.7 | 1740.9 | 1571.6 | 1353.0 |
1.5 m | 2423.3 | 2333.0 | 2223.9 | 1980.2 | 1808.1 | 1648.0 | 1422.0 |
2 m | 2554.1 | 2449.0 | 2199.2 | 2086.5 | 1912.1 | 1627.1 | 1521.2 |
Aisle Social Distance | Luggage Scenarios | ||||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | |
1 m | 8768.1 | 8340.9 | 7963.4 | 7551.1 | 7255.0 | 6540.9 | 4885.7 |
1.5 m | 8534.5 | 8517.8 | 8451.1 | 7726.7 | 6771.5 | 6690.4 | 5713.6 |
2 m | 8736.8 | 8355.4 | 8350.7 | 7931.2 | 7269.9 | 6291.7 | 6179.1 |
Aisle Social Distance | Luggage Scenarios | ||||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | |
1 m | 907.7 | 867.3 | 828.8 | 795.0 | 741.9 | 668.6 | 518.0 |
1.5 m | 1173.8 | 1125.4 | 1077.9 | 1034.1 | 958.5 | 867.3 | 686.0 |
2 m | 1416.3 | 1366.6 | 1311.8 | 1259.8 | 1168.4 | 1052.1 | 853.1 |
Aisle Social Distance | Luggage Scenarios | ||||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | |
1 m | 1745.8 | 1655.1 | 1536.6 | 1440.1 | 1336.2 | 1195.6 | 1045.1 |
1.5 m | 1719.5 | 1636.4 | 1507.2 | 1438.0 | 1323.9 | 1188.1 | 1045.3 |
2 m | 1679.2 | 1584.3 | 1504.9 | 1400.3 | 1293.7 | 1153.1 | 1044.5 |
Aisle Social Distance | Luggage Scenarios | ||||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | |
1 m | 7192.3 | 6808.3 | 6473.2 | 6055.1 | 5562.3 | 5009.2 | 4287.7 |
1.5 m | 7074.9 | 6744.9 | 6341.4 | 6014.4 | 5484.5 | 4951.5 | 4283.8 |
2 m | 6959.2 | 6651.9 | 6265.7 | 5906.1 | 5434.6 | 4904.3 | 4283.4 |
Aisle Social Distance | Luggage Scenarios | ||||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | |
1 m | (16, 16) | (16, 16) | (15, 15) | (15, 15) | (15, 15) | (15, 15) | (15, 15) |
1.5 m | (16, 16) | (15, 15) | (15, 15) | (15, 15) | (15, 15) | (15, 15) | (15, 15) |
2 m | (15, 15) | (15, 15) | (15, 15) | (15, 15) | (15, 15) | (15, 15) | (15, 15) |
Aisle Social Distance | Luggage Scenarios | ||||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | |
1 m | 904.5 | 864.7 | 828.8 | 795.0 | 741.9 | 668.6 | 518.0 |
1.5 m | 1170.2 | 1125.4 | 1077.9 | 1034.1 | 958.5 | 867.3 | 686.0 |
2 m | 1416.3 | 1366.6 | 1311.8 | 1259.8 | 1168.4 | 1052.1 | 853.1 |
Aisle Social Distance | Luggage Scenarios | ||||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | |
1 m | 1749.8 | 1655.4 | 1536.6 | 1440.1 | 1336.2 | 1195.6 | 1045.1 |
1.5 m | 1719.8 | 1636.4 | 1507.2 | 1438.0 | 1323.9 | 1188.1 | 1045.3 |
2 m | 1679.2 | 1584.3 | 1504.9 | 1400.3 | 1293.7 | 1153.1 | 1044.5 |
Aisle Social Distance | Luggage Scenarios | ||||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | |
1 m | 7200.5 | 6833.9 | 6473.2 | 6055.1 | 5562.3 | 5009.2 | 4287.7 |
1.5 m | 7097.3 | 6744.9 | 6341.4 | 6014.4 | 5484.5 | 4951.5 | 4283.8 |
2 m | 6959.2 | 6651.9 | 6265.7 | 5906.1 | 5434.6 | 4904.3 | 4283.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotfas, L.-A.; Milne, R.J.; Delcea, C.; Ioanăș, C. An Investigation of Social Distancing and Quantity of Luggage Impacts on the Three Groups Reverse Pyramid Boarding Method. Symmetry 2021, 13, 544. https://doi.org/10.3390/sym13040544
Cotfas L-A, Milne RJ, Delcea C, Ioanăș C. An Investigation of Social Distancing and Quantity of Luggage Impacts on the Three Groups Reverse Pyramid Boarding Method. Symmetry. 2021; 13(4):544. https://doi.org/10.3390/sym13040544
Chicago/Turabian StyleCotfas, Liviu-Adrian, R. John Milne, Camelia Delcea, and Corina Ioanăș. 2021. "An Investigation of Social Distancing and Quantity of Luggage Impacts on the Three Groups Reverse Pyramid Boarding Method" Symmetry 13, no. 4: 544. https://doi.org/10.3390/sym13040544
APA StyleCotfas, L.-A., Milne, R. J., Delcea, C., & Ioanăș, C. (2021). An Investigation of Social Distancing and Quantity of Luggage Impacts on the Three Groups Reverse Pyramid Boarding Method. Symmetry, 13(4), 544. https://doi.org/10.3390/sym13040544