An Improved SPSIM Index for Image Quality Assessment
<p>Similarity maps for the mean deviation similarity index (MDSI): (<b>a</b>) reference image, (<b>b</b>) distorted image, (<b>c</b>) color similarity map <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>C</mi> <mi>S</mi> </mrow> <mo>^</mo> </mover> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>, (<b>d</b>) similarity map <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>G</mi> <mi>C</mi> <mi>S</mi> </mrow> <mo>^</mo> </mover> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 1 Cont.
<p>Similarity maps for the mean deviation similarity index (MDSI): (<b>a</b>) reference image, (<b>b</b>) distorted image, (<b>c</b>) color similarity map <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>C</mi> <mi>S</mi> </mrow> <mo>^</mo> </mover> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>, (<b>d</b>) similarity map <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>G</mi> <mi>C</mi> <mi>S</mi> </mrow> <mo>^</mo> </mover> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 2
<p>Local similarity maps for the superpixel-based similarity (SPSIM) index (100 superpixels): (<b>a</b>) reference image, (<b>b</b>) distorted image, (<b>c</b>) luminance similarity map, (<b>d</b>) chrominance similarity map, (<b>e</b>) gradient similarity map.</p> "> Figure 3
<p>Local similarity maps for the SPSIM index (400 superpixels): (<b>a</b>) reference image, (<b>b</b>) distorted image, (<b>c</b>) luminance similarity map, (<b>d</b>) chrominance similarity map, (<b>e</b>) gradient similarity map.</p> "> Figure 4
<p>Flowchart of SPSIM with locations of proposed modifications (green boxes).</p> "> Figure 5
<p>Konstanz Artificially Distorted Image quality Database (KADID-10k): reference images.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. MDSI
2.2. SPSIM
3. The Proposed Modifications of SPSIM
4. Experimental Tests
5. Additional Tests on Large-Scale IQA Database
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nadenau, M.; Winkler, S.; Alleysson, D.; Kunt, M. Human vision models for perceptually optimized image processing—A review. Proc. IEEE 2000, 32, 1–15. [Google Scholar]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, A.; Lin, W.; Narwaria, M. Image quality assessment based on gradient similarity. IEEE Trans. Image Process. 2011, 21, 1500–1512. [Google Scholar] [PubMed]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A feature similarity index for image quality assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, W.; Zhang, L.; Mou, X.; Bovik, A.C. Gradient magnitude similarity deviation: A highly efficient perceptual image quality index. IEEE Trans. Image Process. 2013, 23, 684–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Shen, Y.; Li, H. VSI: A visual saliency-induced index for perceptual image quality assessment. IEEE Trans. Image Process. 2014, 23, 4270–4281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nafchi, H.Z.; Shahkolaei, A.; Hedjam, R.; Cheriet, M. Mean deviation similarity index: Efficient and reliable full-reference image quality evaluator. IEEE Access 2016, 4, 5579–5590. [Google Scholar] [CrossRef]
- Gu, K.; Li, L.; Lu, H.; Min, X.; Lin, W. A fast reliable image quality predictor by fusing micro- and macro-structures. IEEE Trans. Ind. Electron. 2017, 64, 3903–3912. [Google Scholar] [CrossRef]
- Shi, C.; Lin, Y. Full Reference Image Quality Assessment Based on Visual Salience With Color Appearance and Gradient Similarity. IEEE Access 2020, 8, 97310–97320. [Google Scholar] [CrossRef]
- Sun, W.; Liao, Q.; Xue, J.H.; Zhou, F. SPSIM: A superpixel-based similarity index for full-reference image quality assessment. IEEE Trans. Image Process. 2018, 27, 4232–4244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, X.; Malik, J. Learning a classification model for segmentation. In Proceedings of the Ninth IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2013; IEEE: New York, NY, USA, 2003; Volume 1, pp. 10–17. [Google Scholar]
- Stutz, D.; Hermans, A.; Leibe, B. Superpixels: An evaluation of the state-of-the-art. Comput. Vis. Image Underst. 2018, 166, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoudpour, S.; Schelkens, P. Synthesized view quality assessment using feature matching and superpixel difference. IEEE Signal Process. Lett. 2020, 27, 1650–1654. [Google Scholar] [CrossRef]
- Jadhav, M.; Dandawate, Y.; Pisharoty, N. Performance evaluation of structural similarity index metric in different color spaces for HVS based assessment of quality of colour images. Int. J. Eng. Technol. 2013, 5, 1555–1562. [Google Scholar]
- ITU-T Recommendation T.871: Information Technology, Digital Compression and Coding of Continuous-Tone Still Images: JPEG File Interchange Format (JFIF); ITU: Geneva, Switzerland, May 2011.
- Sheikh, H.; Sabir, M.; Bovik, A. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 2006, 15, 3440–3451. [Google Scholar] [CrossRef]
- Ponomarenko, N.; Lukin, V.; Zelensky, A.; Egiazarian, K.; Carli, M.; Battisti, F. TID2008-a database for evaluation of full-reference visual quality assessment metrics. Adv. Mod. Radioelectron. 2009, 10, 30–45. [Google Scholar]
- Larson, E.; Chandler, D. Most apparent distortion: Full-reference image quality assessment and the role of strategy. J. Electron. Imaging 2010, 19, 011006. [Google Scholar]
- Ponomarenko, N.; Jin, L.; Ieremeiev, O.; Lukin, V. Image database TID2013: Peculiarities, results and perspectives. Signal Process. Image Commun. 2015, 30, 57–77. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Hosu, V.; Saupe, D. Kadid-10k: A large-scale artificially distorted iqa database. In Proceedings of the IEEE 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX), Berlin, Germany, 5–7 June 2019; pp. 1–3. [Google Scholar]
- Varga, D. Composition-preserving deep approach to full-reference image quality assessment. Signal Image Video Process. 2020, 14, 1265–1272. [Google Scholar] [CrossRef]
Database Name | No. of Original Images | No. of Distortion Types | Ratings per Image | Environment | No. of Distorted Images |
---|---|---|---|---|---|
LIVE | 29 | 5 | 23 | lab | 779 |
TID2008 | 25 | 17 | 33 | lab | 1700 |
CSIQ | 30 | 6 | 5~7 | lab | 866 |
TID2013 | 25 | 24 | 9 | lab | 3000 |
KADID-10k | 81 | 25 | 30 | crowdsourcing | 10125 |
CSIQ | LIVE | TID2008 | TID2013 | |||
---|---|---|---|---|---|---|
PSNR | 0.7857 | 0.8682 | 0.5405 | 0.6788 | 0.7183 | 0.6796 |
SSIM | 0.8579 | 0.9212 | 0.6803 | 0.7459 | 0.8013 | 0.7651 |
FSIMc | 0.9191 | 0.9613 | 0.8762 | 0.8769 | 0.9084 | 0.8928 |
GMSD | 0.9541 | 0.9603 | 0.8788 | 0.8590 | 0.9131 | 0.8897 |
VSI | 0.9279 | 0.9482 | 0.8762 | 0.9000 | 0.9131 | 0.9033 |
MDSI | 0.9531 | 0.9659 | 0.9160 | 0.9085 | 0.9359 | 0.9236 |
PSIM | 0.9642 | 0.9584 | 0.9077 | 0.9080 | 0.9346 | 0.9218 |
VCGS | 0.9301 | 0.9509 | 0.8776 | 0.9000 | 0.9147 | 0.9044 |
SPSIM | 0.9335 | 0.9576 | 0.8927 | 0.9090 | 0.9232 | 0.9139 |
SPSIM (YCbCr) | 0.9346 | 0.9564 | 0.8946 | 0.9099 | 0.9238 | 0.9148 |
SPSIM (MDSI) | 0.9327 | 0.9592 | 0.9049 | 0.9165 | 0.9283 | 0.9208 |
SPSIM (YCbCr_MDSI) | 0.9334 | 0.9583 | 0.9051 | 0.9173 | 0.9285 | 0.9213 |
CSIQ | LIVE | TID2008 | TID2013 | |||
---|---|---|---|---|---|---|
PSNR | 0.8087 | 0.8730 | 0.5245 | 0.6869 | 0.7233 | 0.6829 |
SSIM | 0.8718 | 0.9226 | 0.6780 | 0.7214 | 0.7985 | 0.7550 |
FSIMc | 0.9309 | 0.9645 | 0.8840 | 0.8510 | 0.9076 | 0.8847 |
GMSD | 0.9570 | 0.9603 | 0.8907 | 0.8044 | 0.9031 | 0.8675 |
VSI | 0.9422 | 0.9524 | 0.8979 | 0.8965 | 0.9223 | 0.9100 |
MDSI | 0.9568 | 0.9667 | 0.9208 | 0.8899 | 0.9336 | 0.9167 |
PSIM | 0.9620 | 0.9623 | 0.9119 | 0.8926 | 0.9322 | 0.9158 |
VCGS | 0.9442 | 0.9558 | 0.8975 | 0.8926 | 0.9225 | 0.9087 |
SPSIM | 0.9434 | 0.9607 | 0.9104 | 0.9043 | 0.9297 | 0.9182 |
SPSIM (YCbCr) | 0.9445 | 0.9606 | 0.9127 | 0.9054 | 0.9308 | 0.9195 |
SPSIM (MDSI) | 0.9425 | 0.9630 | 0.9131 | 0.9052 | 0.9310 | 0.9195 |
SPSIM (YCbCr_MDSI) | 0.9434 | 0.9625 | 0.9150 | 0.9067 | 0.9319 | 0.9208 |
CSIQ | LIVE | TID2008 | TID2013 | |||
---|---|---|---|---|---|---|
PSNR | 0.5989 | 0.6801 | 0.3696 | 0.4958 | 0.5361 | 0.4987 |
SSIM | 0.6776 | 0.7474 | 0.4876 | 0.5286 | 0.6103 | 0.5648 |
FSIMc | 0.7684 | 0.8363 | 0.6991 | 0.6665 | 0.7426 | 0.7100 |
GMSD | 0.8122 | 0.8268 | 0.7092 | 0.6339 | 0.7455 | 0.7021 |
VSI | 0.7850 | 0.8058 | 0.7123 | 0.7183 | 0.7554 | 0.7365 |
MDSI | 0.8123 | 0.8395 | 0.7515 | 0.7123 | 0.7789 | 0.7521 |
PSIM | 0.8265 | 0.8298 | 0.7395 | 0.7161 | 0.7780 | 0.7514 |
VCGS | 0.7899 | 0.8141 | 0.7171 | 0.7166 | 0.7594 | 0.7387 |
SPSIM | 0.7859 | 0.8268 | 0.7294 | 0.7249 | 0.7668 | 0.7469 |
SPSIM (YCbCr) | 0.7884 | 0.8267 | 0.7336 | 0.7272 | 0.7690 | 0.7495 |
SPSIM (MDSI) | 0.7859 | 0.8311 | 0.7362 | 0.7282 | 0.7704 | 0.7509 |
SPSIM (YCbCr_MDSI) | 0.7877 | 0.8307 | 0.7393 | 0.7306 | 0.7721 | 0.7530 |
CSIQ | LIVE | TID2008 | TID2013 | |||
---|---|---|---|---|---|---|
PSNR | 0.1624 | 13.5582 | 1.1290 | 0.9103 | 3.9400 | 2.4196 |
SSIM | 0.1349 | 10.6320 | 0.9836 | 0.8256 | 3.1440 | 1.9776 |
FSIMc | 0.1034 | 7.5296 | 0.6468 | 0.5959 | 2.2189 | 1.3936 |
GMSD | 0.0786 | 7.6214 | 0.6404 | 0.6346 | 2.2437 | 1.5080 |
VSI | 0.0979 | 8.6817 | 0.6466 | 0.5404 | 2.4916 | 1.4181 |
MDSI | 0.0795 | 7.0790 | 0.5383 | 0.5181 | 2.0537 | 1.4792 |
PSIM | 0.0696 | 7.7942 | 0.5632 | 0.5193 | 2.2366 | 1.2470 |
VCGS | 0.0964 | 8.4557 | 0.6433 | 0.5404 | 2.4339 | 1.3855 |
SPSIM | 0.0942 | 7.8711 | 0.6047 | 0.5167 | 2.2717 | 1.3629 |
SPSIM (YCbCr) | 0.0934 | 7.9766 | 0.5996 | 0.5143 | 2.2960 | 1.3959 |
SPSIM (MDSI) | 0.0947 | 7.7210 | 0.5712 | 0.4958 | 2.2207 | 1.3483 |
SPSIM (YCbCr_MDSI) | 0.0942 | 7.8048 | 0.5705 | 0.4935 | 2.2407 | 1.3573 |
IQA Index | (ms) |
---|---|
MDSI | 2.14 |
PSIM | 5.33 |
VCGS | 47.68 |
SPSIM | 16.07 |
SPSIM (YCbCr) | 16.80 |
SPSIM (MDSI) | 15.86 |
SPSIM (YCbCr_MDSI) | 17.44 |
SROCC | KROCC | PLCC | RMSE | |
---|---|---|---|---|
No. of SP: 100 | ||||
SPSIM | 0.8672 | 0.6782 | 0.8675 | 0.5386 |
SPSIM (YCbCr) | 0.8674 | 0.6788 | 0.8675 | 0.5385 |
SPSIM (MDSI) | 0.8705 | 0.6827 | 0.8696 | 0.5346 |
SPSIM (YCbCr_MDSI) | 0.8709 | 0.6836 | 0.8698 | 0.5342 |
No. of SP: 200 | ||||
SPSIM | 0.8715 | 0.6836 | 0.8718 | 0.5303 |
SPSIM (YCbCr) | 0.8719 | 0.6843 | 0.8719 | 0.5301 |
SPSIM (MDSI) | 0.8750 | 0.6883 | 0.8741 | 0.5259 |
SPSIM (YCbCr_MDSI) | 0.8755 | 0.6892 | 0.8744 | 0.5254 |
No. of SP: 400 | ||||
SPSIM | 0.8743 | 0.6871 | 0.8744 | 0.5254 |
SPSIM (YCbCr) | 0.8746 | 0.6879 | 0.8745 | 0.5251 |
SPSIM (MDSI) | 0.8777 | 0.6917 | 0.8766 | 0.5209 |
SPSIM (YCbCr_MDSI) | 0.8781 | 0.6927 | 0.8769 | 0.5203 |
No. of SP: 1600 | ||||
SPSIM | 0.8755 | 0.6897 | 0.8749 | 0.5242 |
SPSIM (YCbCr) | 0.8762 | 0.6909 | 0.8755 | 0.5231 |
SPSIM (MDSI) | 0.8791 | 0.6945 | 0.8774 | 0.5193 |
SPSIM (YCbCr_MDSI) | 0.8799 | 0.6958 | 0.8781 | 0.5180 |
No. of SP: 4000 | ||||
SPSIM | 0.8759 | 0.6908 | 0.8751 | 0.5239 |
SPSIM (YCbCr) | 0.8769 | 0.6923 | 0.8760 | 0.5222 |
SPSIM (MDSI) | 0.8797 | 0.6959 | 0.8778 | 0.5186 |
SPSIM (YCbCr_MDSI) | 0.8807 | 0.6974 | 0.8787 | 0.5168 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frackiewicz, M.; Szolc, G.; Palus, H. An Improved SPSIM Index for Image Quality Assessment. Symmetry 2021, 13, 518. https://doi.org/10.3390/sym13030518
Frackiewicz M, Szolc G, Palus H. An Improved SPSIM Index for Image Quality Assessment. Symmetry. 2021; 13(3):518. https://doi.org/10.3390/sym13030518
Chicago/Turabian StyleFrackiewicz, Mariusz, Grzegorz Szolc, and Henryk Palus. 2021. "An Improved SPSIM Index for Image Quality Assessment" Symmetry 13, no. 3: 518. https://doi.org/10.3390/sym13030518
APA StyleFrackiewicz, M., Szolc, G., & Palus, H. (2021). An Improved SPSIM Index for Image Quality Assessment. Symmetry, 13(3), 518. https://doi.org/10.3390/sym13030518