Design and Stability Analysis of a Wall-Climbing Robot Using Propulsive Force of Propeller
<p>Overall diagram of multi-mode wall mobile robot.</p> "> Figure 2
<p>Example of transfer sequence between walls.</p> "> Figure 3
<p>Experimental device for reverse thrust test of propeller motor.</p> "> Figure 4
<p>Propellor motor reverse thrust pull curve.</p> "> Figure 5
<p>Force diagram when the robot is uphill.</p> "> Figure 6
<p>The force analysis diagram of the robot adsorbed on the wall.</p> "> Figure 7
<p>Electronics system.</p> "> Figure 8
<p>Robot traction measurement under different rotor tilt angles.</p> "> Figure 9
<p>Robot traction measurement data on the ground.</p> "> Figure 10
<p>Robot stable motion test under different slopes.</p> "> Figure 11
<p>Stable adsorption movement process of the robot wall.</p> ">
Abstract
:1. Introduction
2. Robot Design
2.1. Robot Structure Design
2.2. Robot Motion Design Planning
2.3. Propeller Power Test
2.4. Force Analysis of the Robot Movement Process
2.5. Robot Electrical System Design
3. Experiment
3.1. Traction Measurement Experiment
3.2. Small Slope Measurement Experiment
3.3. Vertical Wall Measurement Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seo, T.W.; Jeon, Y.; Park, C. Survey on Glass and Facade-Cleaning Robots: Climbing Mechanisms, Cleaning Methods, and Applications. Int. J. Precis. Eng. Manuf. Green Technol. 2019, 6, 367–376. [Google Scholar] [CrossRef]
- Li, J.; Xueshan, G.; Ningjun, F.; Kejie, L.; Zhihong, J.; Zhijian, J. Adsorption Performance of Sliding Wall-Climbing Robot. Chin. J. Mech. Eng. 2010, 23, 733–741. [Google Scholar] [CrossRef]
- Viraj, M.A.; Muthugala, M.; Rajesh Elara, M.; Suresh, R. Design and Control of a Wall Cleaning Robot with Adhesion-Awareness. Symmetry 2020, 12, 1–18. [Google Scholar]
- Qiang, Z.; Li, X. Experimental investigation on climbing robot using rotation-flow adsorption unit. Robot. Auton. Syst. 2018, 105, 112–120. [Google Scholar]
- Fabien, T.; Wolfgang, F.; Gilles, C.; Roland, S.; Roland, M.; Francesco, M. Magnebike: A Magnetic Wheeled Robot with High Mobility for Inspecting Complex-Shaped Structures. J. Field Robot. 2009, 26, 453–476. [Google Scholar]
- Tirthankar, B.; Ryan, S.; Fletcher, T.; Navinda, K.; Ross, D.; Brett, W.; James, B.; Karsten, H.; Alberto, E. Magneto: A Versatile Multi-Limbed Inspection Robot. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 2253–2260. [Google Scholar]
- Feifei, Z.; Xuerong, S.; Zhanpeng, L.; Imran, M.; Yanan, W.; Kai, H. Influence of Processing Parameters on Coating Removal for High PressureWater Jet Technology Based on Wall-Climbing Robot. Appl. Sci. 2020, 10, 1–18. [Google Scholar]
- David, P.; Dikai, L. An approach for real-time motion planning of an inchworm robot in complex steel bridge environments. Robotica 2017, 35, 1280–1309. [Google Scholar]
- Xueshan, G.; Dianguo, X.; Yan, W.; Huanhuan, P.; Weimin, S. Multifunctional robot to maintain boiler water-cooling tubes. Robotica 2009, 27, 941–948. [Google Scholar]
- Sangbae, K.; Spenko, M.; Trujillo, S. Smooth vertical surface climbing with directional adhesion. IEEE Trans. Robot. 2008, 24, 65–74. [Google Scholar] [CrossRef]
- Giuk, L.; Hwang, K.; Kunchan, S.; Jongwon, K.; Metin, S.; Taewon, S. Series of Multilinked Caterpillar Track-type Climbing Robots. J. Field Robot. 2016, 33, 737–750. [Google Scholar]
- Xuan, W.; Rongchuan, W.; Tao, M.; Xiaojie, W.; You, L. A wall-climbing robot using gecko-inspired dry adhesives and under-actuated modular connecting mechanism. Bioinspirat. Biomim. Bioreplicat. 2018, 10593, 1–11. [Google Scholar]
- Yanheng, L.; HyunGyu, K.; TaeWon, S. AnyClimb: A New Wall-Climbing Robotic Platform for Various Curvatures. IEEE Asme Trans. Mechatron. 2016, 21, 1812–1821. [Google Scholar]
- Dharmawan, A.; Xavier, P.; Hariri Hassan, H. Design, Modeling and Experimentation of a Bio-Inspired Miniature Climbing Robot with Bilayer Dry Adhesives. J. Mech. Robot. Trans. Asme 2019, 11, 1–9. [Google Scholar] [CrossRef]
- Aksak, B.; Murphy, M.P.; Sitti, M. Gecko inspired micro-fibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 3058–3063. [Google Scholar]
- Sangbae, K.; Asbeck, A.T.; Cutkosky, M.R.; Provancher, W.R. SpinybotII: Climbing hard walls with compliant microspines. In Proceedings of the ICAR 12th International Conference on Advanced Robotics, Seattle, WA, USA, 18–20 July 2005; pp. 601–606. [Google Scholar]
- Austin, M.P.; Brown, J.M.; Young, C.A.; Clark, J.E. Leg Design to Enable Dynamic Running and Climbing on BOBCAT. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid, Spain, 1–5 October 2018; pp. 3799–3806. [Google Scholar]
- Bruce, D.M.; Peter, R.R.; James, D.D.; Jonathan, E.C. Running up a wall: The role and challenges of dynamic climbing in enhancing multi-modal legged systems. Bioinspirat. Biomim. 2015, 10, 1–16. [Google Scholar]
- Jason, M.B.; Max, P.A.; Bruce, D.M.; Jonathan, E.C. Evidence for multiple dynamic climbing gait families. Bioinspirat. Biomim. 2019, 14, 1–16. [Google Scholar]
- Nishi, A.; Miyagi, H. A Wall-Climbing robot using propulsive force of propeller-mechanism and control-system in a strong wind. Int. J. Ser. C Dyn. Control Robot. Des. Manuf. 1994, 37, 172–178. [Google Scholar] [CrossRef]
- Kanjanapan, S.; Pruttapon, M.; Konlayut, S. Design of a Double-propellers Wall-Climbing Robot. In Proceedings of the 2017 IEEE International Comference on Robotics and Biomimetics, Macau, China, 5–8 December 2017; pp. 239–245. [Google Scholar]
- Beardsley, P. VertiGo—A Wall—Climbing Robot Including Ground—Wall Transition; Disney Research Zurich. 2015. Available online: https://la.disneyresearch.com/publication/vertigo/ (accessed on 17 November 2020).
- Ioi, K.; Kito, T.; Tanaka, Y. Dynamic Simulator for Design and Control of a Wall-climbing Robot. In Proceedings of the 2019 IEEE/SICE International Symposium on System Integration, Paris, France, 14–16 January 2019; pp. 40–44. [Google Scholar]
- Mohamed, G.A.; Mohamed, A.F.; Abdelfatah, M.M. Tele-operated propeller-type climbing robot for inspection of petrochemical vessels. Ind. Robot Int. J. Robot. Res. Appl. 2017, 44, 166–177. [Google Scholar]
- Mohamed, G.A.; Mohamed, A.F.; Abdel-Fattah, M.; Shuji, H.; Hideyuki, S.; Takanobu, M. EJBot-II: An optimized skid-steering propeller-type climbing robot with transition mechanism. Adv. Robot. 2019, 33, 1042–1059. [Google Scholar]
- Jae-Uk, S.; Donghoon, K.; Jong-Heon, K.; Hyun, M. Micro-aerial vehicle type wall-climbing robot mechanism for structural health monitoring, Sensors and Smart Structures Technologies for Civil. Mech. Aerosp. Syst. 2013, 8692, 1–7. [Google Scholar]
- Myeong, W.; Myung, H. Development of a Wall-Climbing Drone Capable of Vertical Soft Landing Using a Tilt-Rotor Mechanism. IEEE Access 2019, 7, 4868–4879. [Google Scholar] [CrossRef]
- Kawasaki, K.; Motegi, Y.; Zhao, M.; Okada, K.; Inaba, M. Dual connected bi-copter with new wall trace locomotion feasibility that can fly at arbitrary tilt angle. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 524–531. [Google Scholar]
- Honnery, D. Introduction to the Theory of Flight; Gracie Press: Northcote, Australia, 2000; pp. 94–122. [Google Scholar]
- Xiong, L.; Yu, Z.; Wang, Y.; Yang, C.; Meng, Y. Vehicle dynamics control of four in-wheel motor drive electric vehicle using gain scheduling based on tyre cornering stiffness estimation. Veh. Syst. Dyn. 2012, 50, 831–846. [Google Scholar] [CrossRef]
Name | Parameter Values | Unit |
---|---|---|
Body size L × W × H | 600 × 400 × 200 | mm |
Body total weight | 2.5 | Kg |
Brushless DC motor output power (max) | 400 | W |
Brushless DC Motor | 1200 | KV |
Micro servo | TD-8120MG | |
Micro servo torque | 22.8 | Kg·cm |
Battery voltage (4S) | 14.8 | V |
Battery voltage (2S) | 7.4 | V |
Diameter × pitch | 254 × 114 | mm |
Propeller lift (max) | 25 | N |
Adsorbability power (max) | 35.3 | N |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, P.; Gao, X.; Zhang, Q.; Gao, R.; Li, M.; Xu, Y.; Zhu, W. Design and Stability Analysis of a Wall-Climbing Robot Using Propulsive Force of Propeller. Symmetry 2021, 13, 37. https://doi.org/10.3390/sym13010037
Liang P, Gao X, Zhang Q, Gao R, Li M, Xu Y, Zhu W. Design and Stability Analysis of a Wall-Climbing Robot Using Propulsive Force of Propeller. Symmetry. 2021; 13(1):37. https://doi.org/10.3390/sym13010037
Chicago/Turabian StyleLiang, Peng, Xueshan Gao, Qingfang Zhang, Rui Gao, Mingkang Li, Yuxin Xu, and Wei Zhu. 2021. "Design and Stability Analysis of a Wall-Climbing Robot Using Propulsive Force of Propeller" Symmetry 13, no. 1: 37. https://doi.org/10.3390/sym13010037
APA StyleLiang, P., Gao, X., Zhang, Q., Gao, R., Li, M., Xu, Y., & Zhu, W. (2021). Design and Stability Analysis of a Wall-Climbing Robot Using Propulsive Force of Propeller. Symmetry, 13(1), 37. https://doi.org/10.3390/sym13010037