Hyperparameter Optimization for Image Recognition over an AR-Sandbox Based on Convolutional Neural Networks Applying a Previous Phase of Segmentation by Color–Space
<p>Scenario approach.</p> "> Figure 2
<p>Projection of figures in the AR-Sandbox.</p> "> Figure 3
<p>Segmentation process by color–space.</p> "> Figure 4
<p>Utilized datasets.</p> "> Figure 5
<p>Base structure of the convolutional neural network (CNN) model.</p> "> Figure 6
<p>Selected model architecture.</p> "> Figure 7
<p>Receiver operating characteristic (ROC) Curve: DataSetOriginal.</p> "> Figure 8
<p>ROC Curve: DataSetFilter.</p> ">
Abstract
:1. Introduction
2. Background
3. Materials and Methods
3.1. Method and Approach of the Scenario
3.2. Development of the Scenario
3.2.1. Image Acquisition
3.2.2. Image Processing
3.2.3. Image Recognition through CNN
Base Structure of the CNN Model
Dictionary of Hyperparameters
Model Preselection
Model Selection
4. Measurement of the Model and Performance Evaluation
4.1. Function Evaluate
4.2. Confusion Matrix
4.3. ROC Curve
5. Results, Analysis, and Discussions
6. Conclusions and Future Works
Author Contributions
Funding
Conflicts of Interest
References
- Shi, W.; Caballero, J.; Husz, F.; Totz, J.; Aitken, A. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 640–651. [Google Scholar]
- Giorgis, S.; Mahlen, N.; Anne, K. Instructor-Led Approach to Integrating an Augmented Reality Sandbox into a Large-Enrollment Introductory Geoscience Course for Nonmajors Produces No Gains. J. Geosci. Educ. 2017, 65, 283–291. [Google Scholar] [CrossRef]
- Woods, T.; Reed, S.; His, S.; John, W.; Woods, M. Pilot Study Using the Augmented Reality Sandbox to Teach Topographic Maps and Surficial Processes in Introductory Geology Labs. J. Geosci. Educ. 2016, 64, 199–214. [Google Scholar] [CrossRef]
- Github. Talos: Manual de Usuario. [En línea]. Available online: https://autonomio.github.io/docs_talos (accessed on 15 November 2018).
- Hijazi, S.; Kumar, R.; Rowen, C. Using Convolutional Neural Networks for Image Recognition. Cadence. 2015. Available online: https://ip.cadence.com/uploads/901/cnn_wp-pdf (accessed on 4 November 2018).
- Neha, S.; Vibhor, J.; Anju, M. An Analysis of Convolutional Neural Networks for Image Classification. Procedia Comput. Sci. 2018, 132, 337–384. [Google Scholar]
- Niioka, E.H.; Satoshi, A.; Yoshimura, A.; Ohigashi, H.; Tagawa, S.; Miyake, J. Classification of C2C12 cells at differentiation by convolutional neural network of deep learning using phase contrast images. Hum. Cell 2018, 31, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Congcong, Z.; Xiaoyan, X.; Xiaomei, L.; Ying-Jie, C.; Wu, Z.; Jun, C.; Chengyun, Z.Z.L. White Blood Cell Segmentation by Color-Space-Based K-Means Clustering. Sensors 2014, 14, 16128–16147. [Google Scholar]
- Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Lee, K.; Lee, J.; Lee, J.; Hwang, S.; Lee, S. Brightness-Based Convolutional Neural Network for Thermal Image Enhancement. IEEE Access 2017, 5, 26867–26879. [Google Scholar] [CrossRef]
- Yao, C.; Zhang, Y.; Zhang, Y.; Liu, H. Application of Convolutional Neural Network in Classification of High Resolution Agricultural Remote Sensing Images. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 2017, 42, 989–992. [Google Scholar] [CrossRef]
- Pang, S.; Du, A.; Orgun, M.; Yu, Z. A novel fused convolutional neural networks for biomedical image classification. Med. Biol. Eng. Comput. 2018. [Google Scholar] [CrossRef] [PubMed]
- Real, R.; Vargas, J. The Probabilistic Basis of Jaccard’s Index of Similarity. Syst. Biol. 1996, 45, 380–385. [Google Scholar] [CrossRef]
- Shamir, R.; Duchin, Y.; Kim, J.; Sapiro, G.; Harel, N. Continuous Dice Coefficient: A Method for Evaluating Probabilistic Segmentations. Surgical Inf. Sci. 2018. [Google Scholar] [CrossRef]
- Zou, K.; Warfield, S.; Bharatha, A.; Tempany, C.; Kaus, M.; Haker, S.; Wells, W.; Jolesz, F.; Kikinis, R. Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap Index. Radiol. Alliance Health Serv. Res. 2004, 11, 178–189. [Google Scholar]
- Hernández, F.; de Ory, E.; Aguilar, S.; Crespo, R. Residue properties for the arithmetical estimation of the image quantization table. Appl. Soft Comput. 2018, 67, 309–321. [Google Scholar] [CrossRef]
- Meza, J.; Espitia, H.; Montenegro, C.; Crespo, R. Statistical analysis of a multi-objective optimization algorithm based on a model of particles with vorticity behavior. Soft Comput. 2016, 20, 3521–3536. [Google Scholar] [CrossRef]
- Wang, S.-H.; Tang, C.; Sun, J.; Yang, J.; Huang, C.; Phillips, P.; Zhang, Y.-D. Multiple Sclerosis Identification by 14-Layer Convolutional Neural Network with Batch Normalization, Dropout, and Stochastic Pooling. Front. Neurosci. 2018, 12, 818. [Google Scholar] [CrossRef]
- Kushwaha, P.; Welekar, R. Feature Selection for Image Retrieval based on Genetic Algorithm. Int. J. Interact. Multimed. Artif. Intell. 2016, 4, 16–21. [Google Scholar] [CrossRef]
- Pacheco, A.; Barón, H.; Crespo, R.; Espada, J. Reconstruction of High Resolution 3D Objects from Incomplete Images and 3D Information. Int. J. Interact. Multimed. Artif. Intell. 2014, 2, 7–16. [Google Scholar] [CrossRef]
- Rezaie, A.A.; Habiboghli, A. Detection of Lung Nodules on Medical Images by the Use of Fractal Segmentation. Int. J. Interact. Multimed. Artif. Intell. 2017, 4, 15–19. [Google Scholar]
- Rosyadi, H.; Gökhan, C. Augmented reality sandbox (AR sandbox) experimental lanscape for fluvial, deltaic and volcano morphology and topography models. Turqua 2016. [Google Scholar] [CrossRef]
- Wang, X.; Hansch, R.; Ma, L.; Hellwich, O. Comparison of Different Color Spaces for Image Segmentation using Graph-cut. In Proceedings of the International Conference on Computer Vision Theory and Applications, Lisbon, Portugal, 5–8 January 2014; pp. 301–308. [Google Scholar]
- Blessie, E.C.; Karthikeyan, E.; Selvaraj, B. Empirical study on the performance of the classifiers based on various criteria using ROC curve in medical health care. In Proceedings of the International Conference on Communication and Computational Intelligence (INCOCCI), Erode, India, 27–29 December 2010. [Google Scholar]
- Wang, X.; Shu, P.; Cao, L.; Wang, Y. A ROC Curve Method for Performance Evaluation of Support Vector Machine with Optimization Strategy. In Proceedings of the International Forum on Computer Science-Technology and Applications, Chongqing, China, 25–27 December 2009. [Google Scholar]
- Senthilnath, J.; Kulkarni, S.; Benediktsson, J.A.; Yang, X.S. A Novel Approach for Multispectral Satellite Image Classification Based on the Bat Algorithm. IEEE Geosci. Remote Sens. Lett. 2016, 13, 599–603. [Google Scholar] [CrossRef]
- Wald, N.; Bestwick, J. Is the area under an ROC curve a valid measure of the performance of a screening or diagnostic test? J. Med. Screen. 2014, 21, 5160. [Google Scholar] [CrossRef] [PubMed]
- Prati, R.C.; Batista, G.E.A.P.A.; Monard, M.C. Curvas ROC para avaliação de classificadores. IEEE Latin Am. Trans. 2008, 6, 215–222. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Optimizer | optimizer |
Loss | categorical_crossentropy |
Metrics | Accuracy, mean squared error |
Key | List of Values | ||
Filter_1 | 16, 32 | ||
Filter_2 | 32, 64 | ||
Filter_3 | 64, 128 | ||
Activation_1 | Relu, LeakyReLU | ||
Rate_1 | 0.25, 0.5, 0.75 | ||
Rate_2 | 0.25, 0.5, 0.75 | ||
Rate_3 | 0.25, 0.5, 0.75 | ||
Rate_4 | 0.25, 0.5, 0.75 | ||
Units_1 | 64, 128, 256, 512 | ||
Batch_size | 2, 4, 8, 16, 32 | ||
Optimizer | Adam, RMSProp, Nadam, Adadelta | ||
Model’s ID | Accuracy | Mean Squared Error | Loss |
1 | 0.9871 | 0.0634 | 0.0088 |
2 | 0.9615 | 0.1021 | 0.0194 |
3 | 0.9615 | 0.0729 | 0.0138 |
4 | 0.9923 | 0.1537 | 0.0185 |
5 | 0.941 | 0.1448 | 0.0279 |
6 | 0.9333 | 0.1771 | 0.032 |
7 | 0.9641 | 0.2625 | 0.0251 |
8 | 0.9743 | 0.0958 | 0.0158 |
9 | 0.9820 | 0.1619 | 0.0129 |
10 | 0.8820 | 0.2886 | 0.0551 |
Measure | Dataset | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
Validation_accuracy | Original | 0.7333 | 0.7111 | 0.7111 | 0.6444 | 0.5333 | 0.6111 | 0.7000 | 0.6555 | 0.7111 | 0.5888 |
Filter | 0.7777 | 0.8999 | 0.7666 | 0.8333 | 0.7555 | 0.7444 | 0.8700 | 0.7666 | 0.8666 | 0.7222 | |
Difference | 0.0444 | 0.1888 | 0.0555 | 0.1889 | 0.2222 | 0.1333 | 0.1700 | 0.1111 | 0.1555 | 0.1334 | |
Validation_Loss | Original | 1.0977 | 1.0986 | 1.0978 | 1.1144 | 1.1027 | 1,0975 | 0.7200 | 1.0978 | 1.0985 | 0.9946 |
Filter | 0.6981 | 0.6234 | 0.7078 | 0.7630 | 0.7082 | 0.7320 | 0.3600 | 0.6678 | 0.4541 | 0.8605 | |
Difference | 0.3996 | 0.4752 | 0.3900 | 0.3514 | 0.3945 | 0.3655 | 0.3600 | 0.4300 | 0.6444 | 0.1341 | |
Validation_mean_squared_error | Original | 0.2222 | 0.2222 | 0.2222 | 0.2257 | 0.2231 | 0.2219 | 0.2326 | 0.2222 | 0.2222 | 0.1766 |
Filter | 0.1061 | 0.0595 | 0.1340 | 0.0922 | 0.1052 | 0.1308 | 0.1108 | 0.1074 | 0.0651 | 0.1665 | |
Difference | 0.1161 | 0.1627 | 0.0882 | 0.1335 | 0.1179 | 0.0911 | 0.1218 | 0.1148 | 0.1571 | 0.0101 |
Parameter | Function | Value |
---|---|---|
Loss | categorical_crossentropy | 0.7200 |
Metrics | Accuracy | 0.7000 |
Mean squared error | 0.2326 |
Parameter | Function | Value |
---|---|---|
Loss | categorical_crossentropy | 0.2300 |
Metrics | Accuracy | 0.8700 |
Mean squared error | 0.1108 |
Circle | Square | Triangle | |
---|---|---|---|
Circle | 24 | 0 | 6 |
Square | 13 | 13 | 4 |
Triangle | 7 | 5 | 18 |
Circle | Square | Triangle | |
---|---|---|---|
Circle | 28 | 0 | 2 |
Square | 5 | 22 | 3 |
Triangle | 0 | 1 | 29 |
Datasets | Figure | Hits (%) | Failures (%) |
---|---|---|---|
dataSetOriginal | Circle | 80 | 20 |
Square | 43.3 | 56.3 | |
Triangle | 60 | 40 | |
dataSetFilter | Circle | 93.3 | 6.7 |
Square | 73.3 | 26.3 | |
Triangle | 96.7 | 3.3 |
Datasets | Class | Figure | AUC |
---|---|---|---|
dataSetTOrginal | 0 | Circle | 0.87 |
1 | Square | 0.93 | |
2 | Triangle | 0.92 | |
dataSetFilter | 0 | Circle | 0.98 |
1 | Square | 0.94 | |
2 | Triangle | 0.98 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Restrepo Rodríguez, A.O.; Casas Mateus, D.E.; Gaona García, P.A.; Montenegro Marín, C.E.; González Crespo, R. Hyperparameter Optimization for Image Recognition over an AR-Sandbox Based on Convolutional Neural Networks Applying a Previous Phase of Segmentation by Color–Space. Symmetry 2018, 10, 743. https://doi.org/10.3390/sym10120743
Restrepo Rodríguez AO, Casas Mateus DE, Gaona García PA, Montenegro Marín CE, González Crespo R. Hyperparameter Optimization for Image Recognition over an AR-Sandbox Based on Convolutional Neural Networks Applying a Previous Phase of Segmentation by Color–Space. Symmetry. 2018; 10(12):743. https://doi.org/10.3390/sym10120743
Chicago/Turabian StyleRestrepo Rodríguez, Andrés Ovidio, Daniel Esteban Casas Mateus, Paulo Alonso Gaona García, Carlos Enrique Montenegro Marín, and Rubén González Crespo. 2018. "Hyperparameter Optimization for Image Recognition over an AR-Sandbox Based on Convolutional Neural Networks Applying a Previous Phase of Segmentation by Color–Space" Symmetry 10, no. 12: 743. https://doi.org/10.3390/sym10120743
APA StyleRestrepo Rodríguez, A. O., Casas Mateus, D. E., Gaona García, P. A., Montenegro Marín, C. E., & González Crespo, R. (2018). Hyperparameter Optimization for Image Recognition over an AR-Sandbox Based on Convolutional Neural Networks Applying a Previous Phase of Segmentation by Color–Space. Symmetry, 10(12), 743. https://doi.org/10.3390/sym10120743