The Power of Collaboration: How Does Green Innovation Network Affect Urban Green Total Factor Productivity?
<p>Proportion of wastewater, sulfur dioxide, and dust emissions in the YRD region relative to national totals.</p> "> Figure 2
<p>Growth of green cooperative patents and their proportion in the YRD region.</p> "> Figure 3
<p>Research framework.</p> "> Figure 4
<p>Theoretical framework.</p> "> Figure 5
<p>Flow chart of the construction of GIN.</p> "> Figure 6
<p>Evolution of GIN and GTFP in YRD region.</p> "> Figure A1
<p>LR function graph of the panel threshold effect.</p> ">
Abstract
:1. Introduction
2. Literature Review and Research Hypothesis
2.1. Relationships Between GIN and GTFP
2.2. The Mechanisms of GIN on GTFP
2.2.1. Green Technology Innovation Effect
2.2.2. Industrial Structure Upgrading Mechanism
2.3. GIN, Green Finance, and GTFP
3. Data Processing and Model Setting
3.1. Variable Selection and Data Processing
3.1.1. Core Independent Variables
3.1.2. Dependent Variable
3.1.3. Mediating Variables
3.1.4. Threshold Variables
3.1.5. Control Variables
3.2. Model Setting
3.2.1. Benchmark Regression Model
3.2.2. Mediation Effect Models
3.2.3. Panel Threshold Model
3.3. Data Sources
4. Empirical Results
4.1. Evolutionary Characteristics of GIN and GTFP
4.2. Benchmark Regression Analysis
4.3. Robustness Test
4.4. Endogeneity Test
4.5. Heterogeneity Analysis
4.5.1. Heterogeneity of Resource-Based City Categories
4.5.2. Urban Scale Heterogeneity
4.5.3. Heterogeneity in Government’s Emphasis on Science and Education
4.6. Further Analysis of Mechanisms
4.6.1. Green Technology Innovation Effects of GIN
4.6.2. Industrial Structure Upgrading Effect of GIN
4.7. The Threshold Effect of GIN on GTFP
4.7.1. Threshold Effect Tests and Threshold Determination
4.7.2. Regression Analysis of Panel Threshold Models
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Policy Implications
5.3. Research Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Obs | Mean | Std. Dev | Min | Max |
---|---|---|---|---|---|
GTFP | 410 | 1.004 | 0.044 | 0.802 | 1.354 |
Deg | 410 | 0.793 | 1.845 | 0 | 13.430 |
Bet | 410 | 1.715 | 5.232 | 0 | 37.050 |
410 | 3.526 | 4.071 | 0.031 | 22.385 | |
410 | 0.989 | 0.345 | 0.312 | 2.751 | |
410 | 0.377 | 0.045 | 0.251 | 0.513 | |
PopDensity | 410 | 0.066 | 0.035 | 0.015 | 0.233 |
Urb | 410 | 0.403 | 0.228 | 0.108 | 1.609 |
Openness | 410 | 0.004 | 0.003 | 0 | 0.014 |
DigEco | 410 | 0.008 | 0.005 | 0.002 | 0.039 |
Variables | Non-Resource Cities | Resource-Based City | Large Cities | Small and Medium Size City | High Level of Governments’ Emphasis | Low Level of Governments’ Emphasis | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | 10) | (11) | (12) | |
Deg | 0.005 ** | −0.012 | 0.004 * | −0.003 | 0.003 ** | 0.011 | ||||||
(2.554) | (−0.777) | (1.888) | (−0.627) | (2.322) | (1.134) | |||||||
Bet | 0.002 * | 0.001 | 0.001 * | −0.001 | 0.003 *** | 0.001 | ||||||
(1.984) | (0.064) | (1.825) | (−0.404) | (5.129) | (0.079) | |||||||
Constant | 1.005 *** | 1.017 *** | 0.918 *** | 0.919 *** | 1.001 *** | 0.939 *** | 0.912 *** | 0.909 *** | 0.984 *** | 1.021 *** | 0.967 *** | 0.925 *** |
(13.518) | (13.847) | (26.203) | (25.989) | (49.502) | (20.911) | (17.097) | (17.551) | (16.475) | (21.085) | (96.937) | (13.105) | |
Control | Yes | Yes | Yes | Yes | NO | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
City | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observation | 290 | 290 | 120 | 120 | 190 | 190 | 220 | 220 | 190 | 190 | 220 | 220 |
0.306 | 0.309 | 0.342 | 0.340 | 0.352 | 0.353 | 0.297 | 00.297 | 0.409 | 0.435 | 0.231 | 0.259 |
References
- Zhou, W.H.; Li, H.L. A study on the multidimensional driving mechanism of cross-regional scientific collaboration network in China. Technol. Anal. Strateg. Manag. 2023, 36, 3667–3681. [Google Scholar] [CrossRef]
- Ben Arfi, W.; Hikkerova, L.; Sahut, J.M. External knowledge sources, green innovation and performance. Technol. Forecast. Soc. 2018, 129, 210–220. [Google Scholar] [CrossRef]
- Fan, J.D.; Xiao, Z.H. Analysis of spatial correlation network of China’s green innovation. J. Clean. Prod. 2021, 299, 126815. [Google Scholar] [CrossRef]
- Liang, Z.Y.; Chen, J.; Jiang, D.Y.; Sun, Y.P. Assessment of the spatial association network of green innovation: Role of energy resources in green recovery. Resour. Policy 2022, 79, 103072. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Shao, X.Y.; Tang, M.P.; Lan, H.X. Spatio-temporal evolution of green innovation network and its multidimensional proximity analysis: Empirical evidence from China. J. Clean. Prod. 2021, 283, 124649. [Google Scholar] [CrossRef]
- Dong, S.M.; Ren, G.X.; Xue, Y.T.; Liu, K. Urban green innovation’s spatial association networks in China and their mechanisms. Sustain. Cities Soc. 2023, 93, 104536. [Google Scholar] [CrossRef]
- Hu, F.; Qiu, L.P.; Xiang, Y.; Wei, S.B.; Sun, H.; Hu, H.; Weng, X.Y.; Mao, L.D.; Zeng, M. Spatial network and driving factors of low-carbon patent applications in China from a public health perspective. Front. Public Health 2023, 11, 1121860. [Google Scholar] [CrossRef] [PubMed]
- Li, X.M.; Liu, X.P. The impact of the collaborative innovation network embeddedness on enterprise green innovation performance. Front. Environ. Sci. 2023, 11, 1190697. [Google Scholar] [CrossRef]
- Chen, K.; Huang, Y.; Yang, C. Analysis of regional productivity growth in China: A generalized metafrontier MPI approach. China Econ. Rev. 2009, 20, 777–792. [Google Scholar] [CrossRef]
- Rusiawan, W.; Tjiptoherijanto, P.; Suganda, E.; Darmajanti, L. Assessment of Green Total Factor Productivity Impact on Sustainable Indonesia Productivity Growth. Procedia Environ. Sci. 2015, 28, 493–501. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Z.; Zhang, X.; Sun, J.; He, B. Institutional Configuration Study of Urban Green Economic Efficiency—Analysis Based on fsQCA and NCA. Pol. J. Environ. Stud. 2024, 1457–1467. [Google Scholar] [CrossRef]
- Liu, J.S.; Lu, L.Y.Y.; Lu, W. Research fronts in data envelopment analysis. Omega 2016, 58, 33–45. [Google Scholar] [CrossRef]
- Wen, J.; Wang, H.; Chen, F.; Yu, R. Research on environmental efficiency and TFP of Beijing areas under the constraint of energy-saving and emission reduction. Ecol. Indic. 2018, 84, 235–243. [Google Scholar] [CrossRef]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and Undesirable Outputs: A Directional Distance Function Approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Xie, R.; Fu, W.; Yao, S.L.; Zhang, Q. Effects of financial agglomeration on green total factor productivity in Chinese cities: Insights from an empirical spatial Durbin model. Energy Econ 2021, 101, 105449. [Google Scholar] [CrossRef]
- He, B.; Yu, X.X.; Ho, S.E.; Zhang, X.Y.; Xu, D. Does China’s Two-Way FDI Coordination Improve Its Green Total Factor Productivity? Pol. J. Environ. Stud. 2024, 33, 173–183. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, C.Y.; Huang, Z.H. Can the digital economy improve green total factor productivity? An empirical study based on Chinese urban data. Math. Biosci. Eng. 2023, 20, 6866–6893. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Z.; Wang, T.; Ren, C.T.; Wang, L.W.; Zhang, K.; Song, R. Heterogeneous impacts and spillover effects of green innovation network and environmental regulation on water use efficiency: A spatiotemporal perspective from 269 cities in China. Sustain. Cities Soc. 2023, 90, 104361. [Google Scholar] [CrossRef]
- Di, K.; Xu, R.; Liu, Z.; Liu, R. How do enterprises’ green collaborative innovation network locations affect their green total factor productivity? Empirical analysis based on social network analysis. J. Clean. Prod. 2024, 438, 140766. [Google Scholar] [CrossRef]
- Hu, F.; Mou, S.Y.; Wei, S.B.; Qiu, L.P.; Hu, H.; Zhou, H.Y. Research on the evolution of China’s photovoltaic technology innovation network from the perspective of patents. Energy Strateg Rev. 2024, 51, 101309. [Google Scholar] [CrossRef]
- Ma, S.J.; Li, L.; Zuo, J.; Gao, F.; Ma, X.Y.; Shen, X.M.; Zheng, Y.L. Regional integration policies and urban green innovation: Fresh evidence from urban agglomeration expansion. J. Environ. Manag. 2024, 354, 120485. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.Z.; Guo, Y.; Bashir, M.F.; Shahbaz, M. Do renewable energy, environmental regulations and green innovation matter for China’s zero carbon transition: Evidence from green total factor productivity. J. Environ. Manag. 2024, 352, 120030. [Google Scholar] [CrossRef]
- Wang, W.L.; Wang, J.L.; Wu, H.T. The impact of energy-consuming rights trading on green total factor productivity in the context of digital economy: Evidence from listed firms in China. Energy Econ. 2024, 131, 107342. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Kogler, D.F.; Whittle, A.; Kim, K.; Lengyel, B. Understanding Regional Branching: Knowledge Diversification via Inventor and Firm Collaboration Networks. Econ. Geogr. 2023, 99, 471–498. [Google Scholar] [CrossRef]
- Polzin, F.; Sanders, M. How to finance the transition to low-carbon energy in Europe? Energy Policy 2020, 147, 111863. [Google Scholar] [CrossRef]
- Di, K.; Liu, Z.; Chai, S.; Li, K.; Li, Y. Spatial correlation network structure of green innovation efficiency and its driving factors in the Bohai Rim region. Environ. Dev. Sustain. 2023, 26, 27227–27247. [Google Scholar] [CrossRef]
- Zou, C.; Huang, Y.C.; Hu, S.L.; Huang, Z. Government participation in low-carbon technology transfer: An evolutionary game study. Technol. Forecast. Soc. 2023, 188, 122320. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, L.Y.; Zhou, Y.; Meng, Q.G. Elements, characteristics, and performances of inter-enterprise knowledge recombination: Empirical research on green innovation adoption in China’s heavily polluting industry. J. Environ. Manag. 2022, 310, 114736. [Google Scholar] [CrossRef]
- Losacker, S. ‘License to green’: Regional patent licensing networks and green technology diffusion in China. Technol. Forecast. Soc. 2022, 175, 121336. [Google Scholar] [CrossRef]
- Hu, F.; Qiu, L.P.; Wei, S.B.; Zhou, H.Y.; Bathuure, I.A.; Hu, H. The spatiotemporal evolution of global innovation networks and the changing position of China: A social network analysis based on cooperative patents. R&D Manag. 2024, 54, 574–589. [Google Scholar]
- Xie, X.M.; Liu, X.J.; Blanco, C. Evaluating and forecasting the niche fitness of regional innovation ecosystems: A comparative evaluation of different optimized grey models. Technol. Forecast. Soc. 2023, 191, 122473. [Google Scholar] [CrossRef]
- Wang, H.J.; Zheng, M.Q.; Yin, H.T.; Chang, C.P. Green innovation, industrial structure and urban eco-efficiency in Chinese cities. Econ. Anal. Policy 2024, 82, 1011–1024. [Google Scholar] [CrossRef]
- Khurshid, A.; Huang, Y.P.; Cifuentes-Faura, J.; Khan, K. Beyond borders: Assessing the transboundary effects of environmental regulation on technological development in Europe. Technol. Forecast. Soc. 2024, 200, 123212. [Google Scholar] [CrossRef]
- Pan, X.Y.; Shen, Z.Y.; Song, M.L.; Shu, Y.L. Enhancing green technology innovation through enterprise environmental governance: A life cycle perspective with moderator analysis of dynamic innovation capability. Energy Policy 2023, 182, 113773. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Yin, J.B.; Yang, Z.S.; Cheng, Z. City Network and Industry Evolution: Case of the Esports Industry in the Yangtze River Delta, China. J. Urban Plan. Dev. 2022, 148, 04022028. [Google Scholar] [CrossRef]
- Tian, H.N.; Zhao, L.Y.; Li, Y.F.; Wang, W. Can enterprise green technology innovation performance achieve “corner overtaking” by using artificial intelligence?-Evidence from Chinese manufacturing enterprises. Technol. Forecast. Soc. 2023, 194, 122732. [Google Scholar] [CrossRef]
- Yuan, B.L.; Xiang, Q.L. Environmental regulation, industrial innovation and green development of Chinese manufacturing: Based on an extended CDM model. J. Clean. Prod. 2018, 176, 895–908. [Google Scholar] [CrossRef]
- Zhou, S.Z.; Peng, F. The impact of technology transfer on the green innovation efficiency of Chinese high-tech industry. Front. Sociol. 2023, 8, 1141616. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.W.; Lu, X.; Guo, F. Quantity or quality? The effect of green finance on enterprise green technology innovation. Eur. J. Innov. Manag. 2023; ahead-of-print. [Google Scholar] [CrossRef]
- Chen, D.; Hu, H.Q.; Wang, N.; Chang, C.P. The impact of green finance on transformation to green energy: Evidence from industrial enterprises in China. Technol. Forecast. Soc. 2024, 204, 123411. [Google Scholar] [CrossRef]
- Zhang, L.X.; Sun, H.P.; Pu, T.L.; Sun, H.; Chen, Z.L. Do green finance and hi-tech innovation facilitate sustainable development? Evidence from the Yangtze River Economic Belt. Econ. Anal. Policy 2024, 81, 1430–1442. [Google Scholar] [CrossRef]
- Acs, Z.J.; Anselin, L.; Varga, A. Patents and innovation counts as measures of regional production of new knowledge. Res. Policy 2002, 31, 1069–1085. [Google Scholar] [CrossRef]
- Xu, A.T.; Song, M.Y.; Xu, S.Y.; Wang, W.P. Accelerated green patent examination and innovation benefits: An analysis of private economic value and public environmental benefits. Technol. Forecast. Soc. 2024, 200, 123105. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef]
- Shan, H.J. Re-estimation of China’s capital stock K: 1952–2006. Quant. Econ. Tech. Econ. Res. 2008, 25, 17–31. (In Chinese) [Google Scholar]
- Tone, K.; Tsutsui, M. An epsilon-based measure of efficiency in DEA—A third pole of technical efficiency. Eur. J. Oper. Res. 2010, 207, 1554–1563. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L. Green credit and industrial green total factor productivity: The impact mechanism and threshold effect tests. J. Environ. Manag. 2023, 331, 117266. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.H.; Li, X. Do raising environmental costs promote industrial green growth? A Quasi-natural experiment based on the policy of raising standard sewage charges. J. Clean. Prod. 2022, 343, 131004. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, J.T.; Duan, C.Q. How does green finance affect the low-carbon economy? Capital allocation, green technology innovation and industry structure perspectives. Econ. Res.-Ekon. Istraz. 2022, 36, 2110138. [Google Scholar] [CrossRef]
- Xie, Q.X. Environmental regulation, green finance development, and corporate technological innovation. Sci. Res. Manag. 2021, 42, 65–72. (In Chinese) [Google Scholar]
- Xie, D.J.; Hu, S.H.; Bao, Y.X. Can green finance improve green total factor productivity in Chinese cities? Evidence from 285 cities in China. J. China Univ. Geosci. Soc. Sci. Ed. 2023, 23, 122–137. (In Chinese) [Google Scholar]
- Yao, F.; Zhu, H.; Wang, M. The Impact of Multiple Dimensions of Urbanization on CO2 Emissions: A Spatial and Threshold Analysis of Panel Data on China’s Prefecture-Level Cities. Sustain. Cities Soc. 2021, 73, 103113. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, Z.; Liang, S.K. Digital economy, entrepreneurial activity, and high-quality development: Empirical evidence from Chinese cities. Manag. World 2020, 36, 65–76. (In Chinese) [Google Scholar]
- Zhao, X.; Nakonieczny, J.; Jabeen, F.; Shahzad, U.; Jia, W.X. Does green innovation induce green total factor productivity? Novel findings from Chinese city level data. Technol. Forecast. Soc. 2022, 185, 122021. [Google Scholar] [CrossRef]
- Wu, J.; Xia, Q.; Li, Z.Y. Green innovation and enterprise green total factor productivity at a micro level: A perspective of technical distance. J. Clean. Prod. 2022, 344, 131070. [Google Scholar] [CrossRef]
- Dong, K.Y.; Yang, S.M.; Wang, J.D.; Dong, X.C. Revisiting energy justice: Is renewable energy technology innovation a tool for realizing a just energy system? Energy Policy 2023, 183, 113820. [Google Scholar] [CrossRef]
- Ouyang, X.L.; Liao, J.Y.; Sun, C.W.; Cao, Y. Measure is treasure: Revisiting the role of environmental regulation in Chinese industrial green productivity. Environ. Impact Assess. 2023, 98, 106968. [Google Scholar] [CrossRef]
- Huang, Y.M.; Chen, C.; Lei, L.J.; Zhang, Y.P. Impacts of green finance on green innovation: A spatial and nonlinear perspective. J. Clean. Prod. 2022, 365, 132548. [Google Scholar] [CrossRef]
- Li, G.Q.; Fang, X.B.; Liu, M.T. Will Digital Inclusive Finance Make Economic Development Greener? Evidence From China. Front. Environ. Sci. 2021, 9, 762231. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Zhao, Y.; Meng, F.S. ESG performance and green innovation of Chinese enterprises: Based on the perspective of financing constraints. J. Environ. Manag. 2024, 370, 122955. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Dimakopoulou, A.G.; Chatzistamoulou, N.; Kounetas, K.; Tsekouras, K. Environmental innovation and R&D collaborations: Firm decisions in the innovation efficiency context. J. Technol. Transf. 2023, 48, 1176–1205. [Google Scholar]
- Jiang, S.S.; Liu, X.J.; Liu, Z.L.; Shi, H.; Xu, H.D. Does green finance promote enterprises’ green technology innovation in China? Front. Environ. Sci. 2022, 10, 981013. [Google Scholar] [CrossRef]
- Melander, L. Customer and Supplier Collaboration in Green Product Innovation: External and Internal Capabilities. Bus Strateg. Environ. 2018, 27, 677–693. [Google Scholar] [CrossRef]
- Laursen, K.; Salter, A.J. The paradox of openness: Appropriability, external search and collaboration. Res. Policy 2014, 43, 867–878. [Google Scholar] [CrossRef]
- Shi, R.Y.; Zhou, H.Y.; Li, X.Q.; Miao, X.; Zhao, X. Green finance, investor preferences, and corporate green innovation. Financ. Res. Lett. 2024, 66, 105676. [Google Scholar] [CrossRef]
- Cheng, P.F.; Wang, X.F.; Choi, B.; Huan, X.A. Green Finance, International Technology Spillover and Green Technology Innovation: A New Perspective of Regional Innovation Capability. Sustainability 2023, 15, 1112. [Google Scholar] [CrossRef]
- Lin, Y.K.; Zhong, Q.M. Does green finance policy promote green total factor productivity? Evidence from a quasi-natural experiment in the green finance pilot zone. Clean. Technol. Environ. 2024, 26, 2661–2685. [Google Scholar] [CrossRef]
Explained Variable: GTFP | ||||
---|---|---|---|---|
Variables | (1) | (2) | (3) | (4) |
Deg | 0.005 ** | 0.004 ** | ||
(2.578) | (2.666) | |||
Bet | 0.002 *** | 0.002 ** | ||
(5.120) | (2.498) | |||
PopDensity | 0.430 | 0.349 | ||
(0.704) | (0.516) | |||
Urb | 0.002 | −0.001 | ||
(0.108) | (−0.061) | |||
Openness | −0.324 | −0.305 | ||
(−0.243) | (−0.230) | |||
DigEco | −1.914 * | −1.809 * | ||
(−1.953) | (−1.876) | |||
Constant | 0.972 *** | 0.969 *** | 0.971 *** | 0.974 *** |
(160.381) | (24.527) | (165.399) | (24.080) | |
Year | No | Yes | No | Yes |
City | No | Yes | No | Yes |
Observation | 410 | 410 | 410 | 410 |
R-squared | 0.260 | 0.265 | 0.266 | 0.270 |
Variables | Replacement of Dependent Variables | Replacement of Independent Variables | Interpreted Variable Ending (1% Points and 99% Points) | |||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Deg | 0.004 *** | 0.004 ** | ||||
(3.816) | (2.666) | |||||
Bet | 0.001 *** | 0.002 ** | ||||
(2.610) | (2.498) | |||||
TotalGP | 0.035 *** | 0.031 *** | ||||
(3.556) | (2.885) | |||||
Constant | 0.999 *** | 0.999 *** | 0.971 *** | 0.987 *** | 0.969 *** | 0.974 *** |
(54.638) | (53.909) | (173.217) | (21.901) | (24.527) | (24.080) | |
Year | Yes | Yes | Yes | Yes | Yes | Yes |
City | Yes | Yes | Yes | Yes | Yes | Yes |
Control | Yes | Yes | No | Yes | Yes | Yes |
Observation | 410 | 410 | 410 | 410 | 410 | 410 |
R-squared | 0.137 | 0.230 | 0.197 | 0.196 | 0.265 | 0.270 |
The First Stage Regression. | ||||
---|---|---|---|---|
Explained Variable: Deg | Explained Variable: Bet | |||
Variable | Model (1) | Model (2) | Model (3) | Model (4) |
−1.513 *** | −5.540 *** | |||
(−2.708) | (−3.694) | |||
0.974 *** | ||||
(11.429) | ||||
0.926 *** | ||||
(14.196) | ||||
Constant | −0.567 | −0.051 | −0.037 | −0.255 |
(−1.488) | (0.398) | (−0.058) | (0.768) | |
The Second Stage Regression. Explained Variable: GTFP | ||||
Deg | 0.026 ** | 0.008 *** | ||
(2.009) | (4.696) | |||
Bet | 0.009 *** | 0.002 *** | ||
(2.913) | (3.153) | |||
Constant | 1.005 *** | 0.988 *** | 0.998 *** | 0.985 *** |
(59.282) | (106.894) | (101.790) | (106.018) | |
Year | YES | YES | Yes | Yes |
City | YES | YES | Yes | Yes |
Control | YES | YES | Yes | Yes |
Underidentification test Kleibergen–Paap rk LM statistic | 6.834 *** [0.0089] | 24.550 *** [0.0000] | 11.646 *** [0.0006] | 31.731 *** [0.0000] |
Weak identification test Kleibergen–Paap rk Wald F statistic | 17.335 | 130.606 | 13.645 | 201.298 |
Stock–Yogo bias critical value | 16.38 (10 %) | 16.38 (10 %) | 16.38 (10 %) | 16.38 (10 %) |
Explained Variable: GreenTech | Explained Variable: IndustryStruc | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Deg | 0.663 *** | 0.039 * | ||
(6.984) | (2.014) | |||
Bet | 0.308 *** | 0.012 ** | ||
(4.425) | (2.369) | |||
Constant | −6.022 | −5.374 | 0.787 *** | 0.795 *** |
(−1.288) | (−1.187) | (3.377) | (3.352) | |
Control | Yes | Yes | Yes | Yes |
Year | Yes | Yes | No | Yes |
City | Yes | Yes | Yes | Yes |
Observation | 410 | 410 | 410 | 410 |
R-squared | 0.673 | 0.698 | 0.733 | 0.734 |
Variable | Threshold Number | F-Value | p-Value | Threshold Value | Critical Number | ||
---|---|---|---|---|---|---|---|
1% | 5% | 10% | |||||
Deg | Single | 88.290 *** | 0.000 | 0.360 | 23.487 | 13.969 | 11.444 |
Double | 10.250 | 0.163 | 45.756 | 27.295 | 15.628 | ||
Triple | 31.400 | 0.583 | 140.147 | 108.132 | 87.853 | ||
Bet | Single | 83.590 *** | 0.000 | 0.360 | 40.409 | 19.188 | 12.728 |
Double | 21.840 | 0.139 | 42.269 | 27.898 | 16.175 | ||
Triple | 60.430 | 0.496 | 222.360 | 181.357 | 161.056 |
Variable | Threshold Variable: Green Finance | |
---|---|---|
(1) | (2) | |
Deg-I () | −0.010 * | |
(−1.771) | ||
Deg-I () | 0.004 * | |
(1.740) | ||
Bet-I () | −0.005 | |
(−1.056) | ||
Bet-I () | 0.002 *** | |
(2.846) | ||
Control | YES | YES |
Observation | 410 | 410 |
R2 | 0.202 | 0.227 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, H.; Deng, H.; Hu, S. The Power of Collaboration: How Does Green Innovation Network Affect Urban Green Total Factor Productivity? Sustainability 2025, 17, 433. https://doi.org/10.3390/su17020433
Jiao H, Deng H, Hu S. The Power of Collaboration: How Does Green Innovation Network Affect Urban Green Total Factor Productivity? Sustainability. 2025; 17(2):433. https://doi.org/10.3390/su17020433
Chicago/Turabian StyleJiao, Hongrui, Hongbing Deng, and Shengmei Hu. 2025. "The Power of Collaboration: How Does Green Innovation Network Affect Urban Green Total Factor Productivity?" Sustainability 17, no. 2: 433. https://doi.org/10.3390/su17020433
APA StyleJiao, H., Deng, H., & Hu, S. (2025). The Power of Collaboration: How Does Green Innovation Network Affect Urban Green Total Factor Productivity? Sustainability, 17(2), 433. https://doi.org/10.3390/su17020433