Agricultural Land, Sustainable Food and Crop Productivity: An Empirical Analysis on Environmental Sustainability as a Moderator from the Economy of China
<p>Conceptual framework of the study.</p> "> Figure 2
<p>Food production and agricultural land.</p> "> Figure 3
<p>Crop production and agricultural land.</p> "> Figure 4
<p>Carbon dioxide emission (CO<sub>2</sub>) and agricultural land.</p> "> Figure 5
<p>GDP growth and agricultural land.</p> "> Figure 6
<p>Urban population and agricultural land.</p> "> Figure 7
<p>Inflation and agricultural land.</p> "> Figure 8
<p>Plots of cumulative sum (CUSUM) and cumulative sum of square (CUSUMQ) for the model FP = f (AGL, CO<sub>2</sub>, GDPG, UP, INF).</p> "> Figure 9
<p>Plots of cumulative sum (CUSUM) and cumulative sum of square (CUSUMQ) for the model (CP = f (AGL, CO<sub>2</sub>, GDPG, UP, INF).</p> "> Figure 10
<p>Plots of cumulative sum (CUSUM) and cumulative sum of square (CUSUMQ) for the model (FP= f (AGL, AGL*ES, CO<sub>2</sub>, GDPG, UP, INF).</p> "> Figure 11
<p>Plots of cumulative sum (CUSUM) and cumulative sum of square (CUSUMQ) for the model (CP= f (AGL, AGL*ES, CO<sub>2</sub>, GDPG, UP, INF).</p> "> Figure 12
<p>Chart of actual and estimated value for the model FP = f (AGL, CO<sub>2</sub>, GDPG, UP, INF).</p> "> Figure 13
<p>Chart of actual and estimated value for the model CP = f (AGL, CO<sub>2</sub>, GDPG, UP, INF).</p> "> Figure 14
<p>Chart of actual and estimated value for the model FP= f (AGL, AGL*ES, CO<sub>2</sub>, GDPG, UP, INF).</p> "> Figure 15
<p>Chart of the actual and estimated value for the model (CP= (f AGL, AGL*ES, CO<sub>2</sub>, GDPG, UP, INF).</p> ">
Abstract
:1. Introduction
2. Theoretical Framework and Development of Hypotheses
2.1. Development of Hypotheses
2.1.1. Agricultural Land and Food Production
2.1.2. Agricultural Land and Crop Production
2.1.3. Agricultural Land, Environmental Sustainability, and Food Production
2.1.4. Agricultural Land, Environmental Sustainability, and Crop Production
3. Materials, Methods, and Study Data
3.1. Econometric Model Specification
3.2. Econometric Methodology and the Research Design Strategy
Hypothesis of alternate H1: βi ≠ 0; (i = 1; 2; 3; 4)
3.3. Unit Root Tests
3.4. The Augmented Dickey–Fuller Test (ADF)
3.5. The Phillips and Perron (PP) Test
3.6. Sources of Data
4. The Results
4.1. The Results of Descriptive Statistics, Correlations, and Preliminary Investigation
4.2. Ordinary Least Square (OLS) Regression
4.3. Stationary/Unit Root Test
4.4. Autoregressive Distributed Lag (ARDL) Bounds Test for Cointegration Analysis
4.5. The Estimation of Long-Term Coefficients
4.6. The ARDL ECM Coefficient Estimation of Short-Term Dynamics
4.7. Stability Test for Robustness Checks
4.8. Toda–Yamamoto Causality Test
4.9. The Unrestricted Error Correction Model (ECM)—The Performance Testing of Forecasting
4.10. Robustness Check: FMOLS and DOLS Estimations
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pereira, P.; Bogunovic, I.; Muñoz-Rojas, M.; Brevik, E.C. Soil ecosystem services, sustainability, valuation, and management. Curr. Opin. Environ. Sci. Health 2018, 5, 7–13. [Google Scholar] [CrossRef]
- Stephens, E.C.; Jones, A.D.; Parsons, D. Agricultural systems research and global food security in the 21st century: An overview and roadmap for future opportunities. Agric. Syst. 2018, 163, 1–6. [Google Scholar] [CrossRef]
- Scown, M.W.; Winkler, K.J.; Nicholas, K.A. Aligning research with policy and practice for sustainable agricultural land systems in Europe. Proc. Natl. Acad. Sci. USA 2019, 116, 4911–4916. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Meng, X.; Elahi, E. Protection of cultivated land resources and grain supply security in main grain-producing areas of China. Sustainability 2022, 14, 2808. [Google Scholar] [CrossRef]
- Antle, J.M.; Basso, B.; Conant, R.T.; Godfray, H.C.J.; Jones, J.W.; Herrero, M.; Howitt, R.E.; Keating, B.A.; Munoz-Carpena, R.; Rosenzweig, C.; et al. Towards a new generation of agricultural system data, models and knowledge products: Design and improvement. Agric. Syst. 2017, 155, 255–268. [Google Scholar] [CrossRef]
- Wu, W.B.; Yu, Q.Y.; Peter, V.H.; You, L.Z.; Yang, P.; Tang, H.J. How could agricultural land systems contribute to raising food production under global change? J. Integr. Agric. 2014, 13, 1432–1442. [Google Scholar] [CrossRef]
- Yu, H.; Ding, W.; Luo, J.; Geng, R.; Cai, Z. Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil. Soil Tillage Res. 2012, 124, 170–177. [Google Scholar] [CrossRef]
- Koutsos, T.M.; Menexes, G.C.; Dordas, C.A. An efficient framework for conducting systematic literature reviews in agricultural sciences. Sci. Total Environ. 2019, 682, 106–117. [Google Scholar] [CrossRef]
- Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrero, M.; Howitt, R.E.; Janssen, S.; et al. Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agric. Syst. 2017, 155, 269–288. [Google Scholar] [CrossRef]
- Chandio, A.A.; Dash, D.P.; Nathaniel, S.P.; Sargani, G.R.; Jiang, Y. Mitigation pathways towards climate change: Modelling the impact of climatological factors on wheat production in top six regions of China. Ecol. Model. 2023, 481, 110381. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, N.; Ali, S.A.; Kannaiah, D.; Khan, N.; Shabbir, M.S.; Bilal, K.; Tabash, M.I. The effects of agriculture productivity, land intensification, on sustainable economic growth: A panel analysis from Bangladesh, India, and Pakistan Economies. Environ. Sci. Pollut. Res. 2022, 30, 116440–116448. [Google Scholar] [CrossRef] [PubMed]
- Filson, G.C. (Ed.) Intensive Agriculture and Sustainability: A Farming Systems Analysis; UBC Press: Vancouver, BC, Canada, 2005. [Google Scholar]
- Zhang, Q.F. From sustainable agriculture to sustainable agrifood systems: A comparative review of alternative models. Sustainability 2024, 16, 9675. [Google Scholar] [CrossRef]
- Headey, D.; Bezemer, D.; Hazell, P.B. Agricultural employment trends in Asia and Africa: Too fast or too slow? World Bank Res. Obs. 2010, 25, 57–89. [Google Scholar] [CrossRef]
- Koch, M. Social policy without growth: Moving towards sustainable welfare states. Soc. Policy Soc. 2022, 21, 447–459. [Google Scholar] [CrossRef]
- Deschenes, O.; Kolstad, C. Economic impacts of climate change on California agriculture. Clim. Change 2011, 109, 365–386. [Google Scholar] [CrossRef]
- Van Passel, S.; Massetti, E.; Mendelsohn, R. A Ricardian analysis of the impact of climate change on European agriculture. Environ. Resour. Econ. 2017, 67, 725–760. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Asseng, S. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef]
- Warsame, A.A.; Sheik-Ali, I.A.; Ali, A.O.; Sarkodie, S.A. Climate change and crop production nexus in Somalia: An empirical evidence from ARDL technique. Environ. Sci. Pollut. Res. 2021, 28, 19838–19850. [Google Scholar] [CrossRef]
- Pickson, R.B.; Ge, H.; Ntiamoah, E.B.; Li, C. Cereal production in the presence of climate change in China. Environ. Sci. Pollut. Res. 2020, 27, 45802–45813. [Google Scholar] [CrossRef] [PubMed]
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Sci. Total Environ. 2022, 806, 150718. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, Z.; Zhu, X. New reflections on food security and land use strategies based on the evolution of Chinese dietary patterns. Land Use Policy 2023, 126, 106520. [Google Scholar] [CrossRef]
- Rehman, A.; Ma, H.; Khan, M.K.; Khan, S.U.; Murshed, M.; Ahmad, F.; Mahmood, H. The asymmetric effects of crops productivity, agricultural land utilization, and fertilizer consumption on carbon emissions: Revisiting the carbonization-agricultural activity nexus in Nepal. Environ. Sci. Pollut. Res. 2022, 29, 39827–39837. [Google Scholar] [CrossRef]
- Havlík, P.; Valin, H.; Herrero, M.; Obersteiner, M.; Schmid, E.; Rufino, M.C.; Mosnier, A.; Thornton, P.K.; Böttcher, H.; Conant, R.T.; et al. Climate change mitigation through livestock system transitions. Proc. Natl. Acad. Sci. USA 2014, 111, 3709–3714. [Google Scholar] [CrossRef]
- Stehfest, E.; van Vuuren, D.; Bouwman, L.; Kram, T. Integrated Assessment of Global Environmental Change with IMAGE 3.0: Model Description and Policy Applications; Netherlands Environmental Assessment Agency (PBL): The Hague, The Netherlands, 2014. [Google Scholar]
- Fitton, N.; Alexander, P.; Arnell, N.; Bajzelj, B.; Calvin, K.; Doelman, J.; Smith, P. The vulnerabilities of agricultural land and food production to future water scarcity. Glob. Environ. Change 2019, 58, 101944. [Google Scholar] [CrossRef]
- Rehman, A.; Ma, H.; Ozturk, I.; Ahmad, M.I. Examining the carbon emissions and climate impacts on mail crops production and land use: Updated evidence from Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 868–882. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, H.; Song, G.; Liu, Y. Optimization of cultivated land pattern for achieving cultivated land system security: A case study in Heilongjiang Province, China. Land Use Policy 2021, 108, 105589. [Google Scholar] [CrossRef]
- Jiang, S.; Meng, J.; Zhu, L. Spatial and temporal analyses of potential land use conflict under the constraints of water resources in the middle reaches of the Heihe River. Land Use Policy 2020, 97, 104773. [Google Scholar] [CrossRef]
- Kong, R.; Peng, Y.; Meng, N.; Fu, H.; Zhou, L.; Zhang, Y.; Turvey, C.G. Heterogeneous choice in the demand for agriculture credit in China: Results from an in-the-field choice experiment. China Agric. Econ. Rev. 2021, 13, 456–474. [Google Scholar] [CrossRef]
- Hassan, Z.; Shabbir, R.; Ahmad, S.S.; Malik, A.H.; Aziz, N.; Butt, A.; Erum, S. Dynamics of land use and land cover change (LULCC) using geospatial techniques: A case study of Islamabad Pakistan. SpringerPlus 2016, 5, 812. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.; Sengupta, S.; Mohinuddin, S.K.; Gupta, K. Dynamics of land use and land cover change in peri-urban area of Burdwan city, India: A remote sensing and GIS-based approach. GeoJournal 2023, 88, 4189–4213. [Google Scholar] [CrossRef]
- Shabbir, M.S.; Wisdom, O. The relationship between corporate social responsibility, environmental investments and financial performance: Evidence from manufacturing companies. Environ. Sci. Pollut. Res. 2020, 27, 39946–39957. [Google Scholar] [CrossRef] [PubMed]
- Khuong, D.A.; Nguyen, H.N.; Tsubota, T. Activated carbon produced from bamboo and solid residue by CO2 activation utilized as CO2 adsorbents. Biomass Bioenergy 2021, 148, 106039. [Google Scholar] [CrossRef]
- Ali, G.; Abbas, S.; Qamer, F.M.; Wong, M.S.; Rasul, G.; Irteza, S.M.; Shahzad, N. Environmental impacts of shifts in energy, emissions, and urban heat island during the COVID-19 lockdown across Pakistan. J. Clean. Prod. 2021, 291, 125806. [Google Scholar] [CrossRef]
- Anser, M.K.; Apergis, N.; Syed, Q.R. Impact of economic policy uncertainty on CO2 emissions: Evidence from top ten carbon emitter countries. Environ. Sci. Pollut. Res. 2021, 28, 29369–29378. [Google Scholar] [CrossRef]
- Anser, M.K.; Usman, M.; Godil, D.I.; Shabbir, M.S.; Sharif, A.; Tabash, M.I.; Lopez, L.B. Does globalization affect the green economy and environment? The relationship between energy consumption, carbon dioxide emissions, and economic growth. Environ. Sci. Pollut. Res. 2021, 28, 51105–51118. [Google Scholar] [CrossRef]
- Anser, M.K.; Ahmad, M.; Khan, M.A.; Zaman, K.; Nassani, A.A.; Askar, S.E.; Abro, M.M.Q.; Kabbani, A. The role of information and communication technologies in mitigating carbon emissions: Evidence from panel quantile regression. Environ. Sci. Pollut. Res. 2021, 28, 21065–21084. [Google Scholar] [CrossRef]
- Anser, M.K.; Syed, Q.R.; Lean, H.H.; Alola, A.A.; Ahmad, M. Do economic policy uncertainty and geopolitical risk lead to environmental degradation? Evidence from emerging economies. Sustainability 2021, 13, 5866. [Google Scholar] [CrossRef]
- Arslan, Z.; Kausar, S.; Kannaiah, D.; Shabbir, M.S.; Khan, G.Y.; Zamir, A. The mediating role of green creativity and the moderating role of green mindfulness in the relationship among clean environment, clean production, and sustainable growth. Environ. Sci. Pollut. Res. 2021, 29, 13238–13252. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Rome. 2018, p. 403. Available online: http://faostat.Fao.org (accessed on 12 October 2024).
- Herrero, M.; Havlík, P.; Valin, H.; Notenbaert, A.; Rufino, M.C.; Thornton, P.K.; Blümmel, M.; Weiss, F.; Grace, D.; Obersteiner, M. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. Acad. Sci. USA 2013, 110, 20888–20893. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Liu, L.; Ling, Q.; Cai, Y.; Yu, S.; Wang, S.; Fu, D.; Hu, B.; Wang, X. Biochar for the removal of contaminants from soil and water: A review. Biochar 2022, 4, 19. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Ling, D.; Yang, Q.X.; Feng, Y.C.; Xiu, J. Central environmental protection inspection and carbon emission reduction: A tripartite evolutionary game model from the perspective of carbon neutrality. Pet. Sci 2024, 21, 2139–2153. [Google Scholar] [CrossRef]
- Sun, R.; Liu, X.; Li, D.; Zhuang, J.; Qi, S.; Meng, B.; Liu, M. Optimization of China’s pig production system to reduce environmental impacts based on a data envelopment and life cycle analysis model. Resour. Conserv. Recycl. 2022, 185, 106483. [Google Scholar] [CrossRef]
- Xue, Y.J.; Yan, J.L. Breeding efficiency of beef cattle in Chinese suitable areas. JAPS J. Anim. Plant Sci 2019, 29, 1413–1423. [Google Scholar]
- Wang, J.; Zhang, S.; Zhang, L. Intelligent hog farming adoption choices using the unified theory of acceptance and use of technology model: Perspectives from China’s new agricultural managers. Agriculture 2023, 13, 2067. [Google Scholar] [CrossRef]
- Holzinger, A.; Saranti, A.; Angerschmid, A.; Retzlaff, C.O.; Gronauer, A.; Pejakovic, V.; Medel-Jimenez, F.; Krexner, T.; Gollob, C.; Stampfer, K. Digital transformation in smart farm and forest operations needs human-centered AI: Challenges and future directions. Sensors 2022, 22, 3043. [Google Scholar] [CrossRef]
- Kim, D.; Jin, S. Innovation capabilities and business performance in the smart farm sector of South Korea. J. Open Innov. Technol. Mark. Complex. 2022, 8, 204. [Google Scholar] [CrossRef]
- Baumüller, H. Towards smart farming? Mobile technology trends and their potential for developing country agriculture. In Handbook on ICT in Developing Countries; River Publishers: Rome, Italy, 2022; pp. 191–210. [Google Scholar]
- Si, R.; Yao, Y.; Liu, X.; Lu, Q.; Liu, M. Role of risk perception and government regulation in reducing over-utilization of veterinary antibiotics: Evidence from hog farmers of China. One Health 2022, 15, 100448. [Google Scholar] [CrossRef]
- Wang, J.; Hu, X. Factors Influencing Disease Prevention and Control Behaviours of Hog Farmers. Animals 2023, 13, 787. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, H.; Wu, J.; Li, J. Effect of the digital economy on large-scale pig farming: An empirical study from China. Cogent Food Agric. 2023, 9, 2238985. [Google Scholar] [CrossRef]
- Bai, Y.; Zhai, Y.; Zhang, T.; Ren, K.; Jia, Y.; Zhou, X.; Cheng, Z.; Tanikawa, H.; Hong, J. Sustainable assessment and resource recycling opportunities identification for China’s pig industry: Integrating environmental, economic, and social perspectives. Sustain. Prod. Consum 2023, 39, 425–437. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, H. The Role of Contract Farming in Green Smart Agricultural Technology. Sustainability 2023, 15, 10600. [Google Scholar] [CrossRef]
- Li, D.; Nanseki, T. Practice, Promotion, and Perspective of Smart Agriculture in China. In Agricultural Innovation in Asia: Efficiency, Welfare, and Technology; Springer: Berlin/Heidelberg, Germany, 2023; pp. 183–203. [Google Scholar]
- Zhu, K. Drivers of innovation and Development of top performing agribusinesses in China. Rev. Econ. Mund. 2023, 63, 139–162. [Google Scholar] [CrossRef]
- Yu, P.; Chen, J.; Sampat, M.; Misuko, N. The Digital Transformation of Rural Agricultural Business Management: A Case Study of China. In Empirical Research for Futuristic E-Commerce Systems: Foundations and Applications; IGI Global: Hershey, PA, USA, 2022; pp. 23–52. [Google Scholar]
- Sun, Y.; Anwar, A.; Razzaq, A.; Liang, X.; Siddique, M. Asymmetric role of renewable energy, green innovation, and globalization in deriving environmental sustainability: Evidence from top-10 polluted countries. Renew. Energy 2022, 185, 280–290. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Reflections on China’s food security and land use policy under rapid urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Kastner, T.; Rivas, M.J.I.; Koch, W.; Nonhebel, S. Global changes in diets and the consequences for land requirements for food. Proc. Natl. Acad. Sci. USA 2012, 109, 6868–6872. [Google Scholar] [CrossRef]
- Wang, S.; Fu, G.; Ma, X.; Xu, L.; Yang, F. Exploring the optimal crop planting structure to balance water saving, food security and incomes under the spatiotemporal heterogeneity of the agricultural climate. J. Environ. Manag. 2021, 295, 113130. [Google Scholar] [CrossRef]
- Hertel, T.W.; Ramankutty, N.; Baldos, U.L.C. Global market integration increases the likelihood that a future African Green Revolution could increase crop land use and CO2 emissions. Proc. Natl. Acad. Sci. USA 2014, 111, 13799–13804. [Google Scholar] [CrossRef]
- Dar, J.A.; Asif, M. Do agriculture-based economies mitigate CO2 emissions? Empirical evidence from five SAARC countries. Int. J. Energy Sect. Manag. 2020, 14, 638–652. [Google Scholar] [CrossRef]
- Rafiq, S.; Salim, R.; Nielsen, I. Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies. Energy Econ. 2016, 56, 20–28. [Google Scholar] [CrossRef]
- Malthus, T.R. An essay on the principle of population (1798). In The Works of Thomas Robert Malthus; Pickering & Chatto Publishers: London, UK, 1986; Volume 1, pp. 1–139. [Google Scholar]
- Boserup, M. Agrarian structure and take-off. In The Economics of Take-Off into Sustained Growth; Palgrave Macmillan: London, UK, 1965; pp. 201–224. [Google Scholar]
- Jin, X.; Bai, Z.; Oenema, O.; Winiwarter, W.; Velthof, G.; Chen, X.; Ma, L. Spatial planning needed to reduce nitrogen and phosphorus surpluses in China’s agriculture drastically. Environ. Sci. Technol. 2020, 54, 11894–11904. [Google Scholar] [CrossRef] [PubMed]
- Gokmenoglu, K.K.; Taspinar, N. Testing the agriculture-induced EKC hypothesis: The case of Pakistan. Environ. Sci. Pollut. Res. 2018, 25, 22829–22841. [Google Scholar] [CrossRef] [PubMed]
- Van Vuren, G.; Liebrand, J.; Vincent, L. Debating the water professional of tomorrow. Irrig. Drain. 2009, 58, S162–S167. [Google Scholar] [CrossRef]
- Rej, S.; Bandyopadhyay, A.; Mahmood, H.; Murshed, M.; Mahmud, S. The role of liquefied petroleum gas in decarbonizing India: Fresh evidence from wavelet–partial wavelet coherence approach. Environ. Sci. Pollut. Res. 2022, 29, 35862–35883. [Google Scholar] [CrossRef]
- Jahanger, A.; Usman, M.; Murshed, M.; Mahmood, H.; Balsalobre-Lorente, D. The linkages between natural resources, human capital, globalization, economic growth, financial development, and ecological footprint: The moderating role of technological innovations. Resour. Policy 2022, 76, 102569. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, X.T.; Ge, S.; Jiang, R. Is economic growth compatible with a reduction in CO2 emissions? Empirical analysis of the United States. Resour. Conserv. Recycl. 2019, 151, 104443. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S. Carbon emission and economic output of China’s marine fishery—A decoupling efforts analysis. Mar. Policy 2022, 135, 104831. [Google Scholar] [CrossRef]
- Alola, A.A.; Ozturk, I. Mirroring risk to investment within the EKC hypothesis in the United States. J. Environ. Manag. 2021, 293, 112890. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Bilandžija, D.; Zgorelec, Ž.; Kisić, I. Influence of tillage practices and crop type on soil CO2 emissions. Sustainability 2016, 8, 90. [Google Scholar] [CrossRef]
- García-González, I.; Hontoria, C.; Gabriel, J.L.; Alonso-Ayuso, M.; Quemada, M. Cover crops to mitigate soil degradation and enhance soil functionality in irrigated land. Geoderma 2018, 322, 81–88. [Google Scholar] [CrossRef]
- Bin, W.; Jie, L.; Wei, J.; Liang, Z.; Song, G. Impacts of the rangeland degradation on CO2 flux and the underlying mechanisms in the Three-River Source Region on the Qinghai-Tibetan Plateau. China Environ. Sci. 2012, 32, 1764–1771. [Google Scholar]
- Cao, J.; Adamowski, J.F.; Deo, R.C.; Xu, X.; Gong, Y.; Feng, Q. Grassland degradation on the Qinghai-Tibetan Plateau: Reevaluation of causative factors. Rangel. Ecol. Manag. 2019, 72, 988–995. [Google Scholar] [CrossRef]
- Dagar, V.; Khan, M.K.; Alvarado, R.; Usman, M.; Zakari, A.; Rehman, A.; Murshed, M.; Tillaguango, B. Variations in technical efficiency of farmers with distinct land size across agro-climatic zones: Evidence from India. J. Clean. Prod. 2021, 315, 128109. [Google Scholar] [CrossRef]
- Bonesmo, H.; Skjelvåg, A.O.; Janzen, H.H.; Klakegg, O.; Tveito, O.E. Greenhouse gas emission intensities and economic efficiency in crop production: A systems analysis of 95 farms. Agric. Syst. 2023, 110, 142–151. [Google Scholar] [CrossRef]
- Wu, H.; Yuan, Z.; Geng, Y.; Ren, J.; Jiang, S.; Sheng, H.; Gao, L. Temporal trends and spatial patterns of energy use efficiency and greenhouse gas emissions in crop production of Anhui Province, China. Energy 2017, 133, 955–968. [Google Scholar] [CrossRef]
- Wang, Z.B.; Chen, J.; Mao, S.C.; Han, Y.C.; Chen, F.; Zhang, L.-F.; Li, Y.-B.; Li, C.D. Comparison of greenhouse gas emissions of chemical fertilizer types in China’s crop production. J. Clean. Prod. 2017, 141, 1267–1274. [Google Scholar] [CrossRef]
- Rehman, A.; Jingdong, L.; Khatoon, R.; Hussain, I.; Iqbal, M.S. Modern agricultural technology adoption its importance, role and usage for the improvement of agriculture. Life Sci. J. 2016, 14, 70–74. [Google Scholar]
- Kalantari, F.; Tahir, O.M.; Lahijani, A.M.; Kalantari, S. A review of vertical farming technology: A guide for implementation of building integrated agriculture in cities. In Advanced Engineering Forum; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2017; Volume 24, pp. 76–91. [Google Scholar]
- Houshyar, E.; Sheikh Davoodi, M.J.; Nassiri, S.M. Energy efficiency for wheat production using data envelopment analysis (DEA) technique. J. Agric. Technol. 2010, 6, 663–672. [Google Scholar]
- Mausch, K.; Harris, D.; Heather, E.; Jones, E.; Yim, J.; Hauser, M. Households’ aspirations for rural development through agriculture. Outlook Agric. 2018, 47, 108–115. [Google Scholar] [CrossRef]
- Fais, B.; Sabio, N.; Strachan, N. The critical role of the industrial sector in reaching long-term emission reduction, energy efficiency and renewable targets. Appl. Energy 2016, 162, 699–712. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. Factors affecting CO2 emissions in China’s agriculture sector: Evidence from geographically weighted regression model. Energy Policy 2017, 104, 404–414. [Google Scholar] [CrossRef]
- Rehman, A.; Ulucak, R.; Murshed, M.; Ma, H.; Işık, C. Carbonization and atmospheric pollution in China: The asymmetric impacts of forests, livestock production, and economic progress on CO2 emissions. J. Environ. Manag. 2021, 294, 113059. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dong, X.; Qiao, H.; Dong, K. Impact assessment of agriculture, energy and water on CO2 emissions in China: Untangling the differences between major and non-major grain-producing areas. Appl. Econ. 2020, 52, 6482–6497. [Google Scholar] [CrossRef]
- Fu, C.; Wang, S.; Xiong, Z.; Gutowski, W.J.; Lee, D.K.; McGregor, J.L.; Sato, Y.; Kato, H.; Kim, J.-W.; Suh, M.S. Regional climate model intercomparison project for Asia. Bull. Am. Meteorol. Soc. 2025, 86, 257–266. [Google Scholar] [CrossRef]
- Alsaleh, M.; Abdul-Rahim, A.S. Financial development and bioenergy consumption in the EU28 region: Evidence from panel auto-regressive distributed lag bound approach. Resources 2019, 8, 44. [Google Scholar] [CrossRef]
- Tarique, K.M.D.; Sohag, K. Co Emission and Agricultural Productivity 2 in South East Asian Region: A pooled Mean Group Estimation. 2014. Available online: www.researchgate.net (accessed on 22 April 2024).
- Verburg, P.H.; Mertz, O.; Erb, K.H.; Haberl, H.; Wu, W. Land system change and food security: Towards multi-scale land system solutions. Curr. Opin. Environ. Sustain. 2013, 5, 494–502. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Tomlinson, I. Doubling food production to feed the 9 billion: A critical perspective on a key discourse of food security in the UK. J. Rural. Stud. 2013, 29, 81–90. [Google Scholar] [CrossRef]
- Gardi, C.; Panagos, P.; Van Liedekerke, M.; Bosco, C.; De Brogniez, D. Land take and food security: Assessment of land take on the agricultural production in Europe. J. Environ. Plan. Manag. 2015, 58, 898–912. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Gibbs, H.K.; Salmon, J.M. Mapping the worlds degraded lands. Appl. Geogr. 2015, 57, 12–21. [Google Scholar] [CrossRef]
- Lambin, E.F.; Gibbs, H.K.; Ferreira, L.; Grau, R.; Mayaux, P.; Meyfroidt, P.; Morton, D.C.; Rudel, T.K.; Gasparri, I.; Munger, J. Estimating the world’s potentially available agricultural land using a bottom-up approach. Glob. Environ. Change 2013, 23, 892–901. [Google Scholar] [CrossRef]
- Speidel, J.J.; Weiss, D.C.; Ethelston, S.A.; Gilbert, S.M. Population policies, programmes and the environment. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 3049–3065. [Google Scholar] [CrossRef]
- Duan, H.; Zhou, S.; Jiang, K.; Bertram, C.; Harmsen, M.; Kriegler, E.; van Vuuren, D.P.; Wang, S.; Fujimori, S.; Tavoni, M. Assessing China’s efforts to pursue the 1.5 C warming limit. Science 2021, 372, 378–385. [Google Scholar] [CrossRef]
- Csikós, N.; Tóth, G. Concepts of agricultural marginal lands and their utilization: A review. Agric. Syst. 2023, 204, 103560. [Google Scholar] [CrossRef]
- Schröter, D.; Cramer, W.; Leemans, R.; Prentice, I.C.; Araújo, M.B.; Arnell, N.W.; Zierl, B. Ecosystem service supply and vulnerability to global change in Europe. Science 2005, 310, 1333–1337. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef]
- Erb, K.H.; Haberl, H.; Krausmann, F.; Lauk, C.; Plutzar, C.; Steinberger, J.K.; Müller, C.; Bondeau, A.; Waha, K. Feeding and Fuelling the World Sustainably, Fairly and Humanely–A Scoping Study; Klagenfurt University: Vienna, Austria, 2009. [Google Scholar]
- Fader, M.; Gerten, D.; Krause, M.; Lucht, W.; Cramer, W. Spatial decoupling of agricultural production and consumption: Quantifying dependences of countries on food imports due to domestic land and water constraints. Environ. Res. Lett. 2009, 8, 014046. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Lambin, E.F.; Erb, K.H.; Hertel, T.W. Globalization of land use: Distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 2013, 5, 438–444. [Google Scholar] [CrossRef]
- Weinzettel, J.; Hertwich, E.G.; Peters, G.P.; Steen-Olsen, K.; Galli, A. Affluence drives the global displacement of land use. Glob. Environ. Change 2013, 23, 433–438. [Google Scholar] [CrossRef]
- Johnson, R.C. Five facts about value-added exports and implications for macroeconomics and trade research. J. Econ. Perspect. 2014, 28, 119–142. [Google Scholar] [CrossRef]
- FAOSTAT. FAOSTAT Emissions Database. Agriculture. Available online: https://www.fao.org/faostat/en/#search/Land%20used%20for%20aquaculture (accessed on 23 April 2024).
- Spangler, K.; Burchfield, E.K.; Schumacher, B. Past and current dynamics of US agricultural land use and policy. Front. Sustain. Food Syst. 2020, 4, 98. [Google Scholar] [CrossRef]
- Borchers, A.; Ifft, J.; Kuethe, T. Linking the price of agricultural land to use values and amenities. Am. J. Agric. Econ. 2014, 96, 1307–1320. [Google Scholar] [CrossRef]
- Telles, T.S.; Reydon, B.P.; Maia, A.G. Effects of no-tillage on agricultural land values in Brazil. Land Use Policy 2018, 76, 124–129. [Google Scholar] [CrossRef]
- Zuazo, V.D.; Pleguezuelo, C.R.; Martínez, J.F.; Rodríguez, B.C.; Raya, A.M.; Galindo, P.P. Harvest intensity of aromatic shrubs vs. soil erosion: An equilibrium for sustainable agriculture (SE Spain). Catena 2008, 73, 107–116. [Google Scholar] [CrossRef]
- Lee, C.L.; Strong, R.; Dooley, K.E. Analyzing precision agriculture adoption across the globe: A systematic review of scholarship from 1999–2020. Sustainability 2021, 13, 10295. [Google Scholar] [CrossRef]
- King, D.A.; Sinden, J.A. Influence of soil conservation on farm land values. Land Econ. 1988, 64, 242–255. [Google Scholar] [CrossRef]
- Boyle, S. The case for regulation of agricultural water pollution. Environ. Law Rev. 2014, 16, 4–20. [Google Scholar] [CrossRef]
- Kik, M.C.; Claassen, G.D.H.; Meuwissen, M.P.; Smit, A.B.; Saatkamp, H.W. The economic value of sustainable soil management in arable farming systems–A conceptual framework. Eur. J. Agron. 2021, 129, 126334. [Google Scholar] [CrossRef]
- Mbuh, M.T. The Farm in Colonial and Post-independence Imagination: A Crisis of Continuity. In African Agrarian Philosophy; Springer International Publishing: Cham, Switzerland, 2024; pp. 409–423. [Google Scholar]
- Bhullar, A.; Nadeem, K.; Ali, R.A. Simultaneous multi-crop land suitability prediction from remote sensing data using semi-supervised learning. Sci. Rep. 2023, 13, 6823. [Google Scholar] [CrossRef] [PubMed]
- Stacey, M.D.; Henk, S. Conservation as integration desire to belong as maturation for environmental conservation. Int. J. Soc. Nat. Resour. 2022, 35, 75–91. [Google Scholar]
- Bailack, K.M.; Fogwe, Z.N. Land resource conflict mitigation diplomacy for harmonious inter communities coexistence: The Oku-Mbessa legacy in the North West region of Cameroon. Int. J. Curr. Res. 2019, 11, 5628–5635. [Google Scholar]
- Pambudi, A.S. Evaluation of government funding support for national priority development related to the environmental sector in regions. Indones. J. Appl. Environ. Stud. 2023, 4, 10–21. [Google Scholar] [CrossRef]
- Kimengsi, J.N.; Akumbo, C.M.; Balgah, R.A.; Tingum, E.N.; Tume, S.J.P.; Akhere, G.S. Farm-based climate adaptation dynamics: Insights from the vegetable sector in the Western Highlands of Cameroon. Cogent Soc. Sci. 2022, 8, 2126452. [Google Scholar] [CrossRef]
- Taiwo, B.E.; Kafy, A.A.; Samuel, A.A.; Rahaman, Z.A.; Ayowole, O.E.; Shahrier, M.; Duti, B.M.; Rahman, M.T.; Peter, O.T.; Abosede, O.O. Monitoring and predicting the influences of land use/land cover change on agricultural land characteristics and drought severity using remote sensing techniques. Environ. Sustain. Indic. 2023, 18, 100248. [Google Scholar]
- Meehan, T.D.; Werling, B.P.; Landis, D.A.; Gratton, C. Agricultural landscape simplification and insecticide use in the Midwestern United States. Proc. Natl. Acad. Sci. USA 2011, 108, 11500–11505. [Google Scholar] [CrossRef]
- Grab, H.; Danforth, B.; Poveda, K.; Loeb, G. Landscape simplification reduces classical biological control and crop yield. Ecol. Appl. 2018, 28, 348–355. [Google Scholar] [CrossRef]
- Hendrickx, F.; Maelfait, J.P.; Van Wingerden, W.; Schweiger, O.; Speelmans, M.; Aviron, S.; Augenstein, I.; Billeter, R.; Bailey, D.; Bukacek, R. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J. Appl. Ecol. 2007, 44, 340–351. [Google Scholar] [CrossRef]
- Tscharntke, T.; Tylianakis, J.M.; Rand, T.A.; Didham, R.K.; Fahrig, L.; Batáry, P.; Bengtsson, J.; Clough, Y.; Crist, T.O.; Dormann, C.F.; et al. Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol. Rev. 2012, 87, 661–685. [Google Scholar] [CrossRef] [PubMed]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, M.D.; Tiemann, L.K.; Grandy, A.S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 2014, 24, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Tiemann, L.K.; Grandy, A.S.; Atkinson, E.E.; Marin-Spiotta, E.; McDaniel, M.D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 2015, 18, 761–771. [Google Scholar] [CrossRef]
- Landis, D.A. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic Appl. Ecol. 2015, 18, 1–12. [Google Scholar] [CrossRef]
- Swift, M.J.; Izac, A.M.; Van Noordwijk, M. Biodiversity and ecosystem services in agricultural landscapes—Are we asking the right questions? Agric. Ecosyst. Environ. 2014, 104, 113–134. [Google Scholar] [CrossRef]
- Burchfield, E.K.; Nelson, K.S.; Spangler, K. The impact of agricultural landscape diversification on US crop production. Agric. Ecosyst. Environ. 2019, 285, 106615. [Google Scholar] [CrossRef]
- Falco, S.D.; Perrings, C. Cooperatives, wheat diversity and the crop productivity in southern Italy. In Valuing Crop Biodiversity: On-Farm Genetic Resources and Economic Change; CABI Publishing: Wallingford, UK, 2005; pp. 270–279. [Google Scholar]
- Abson, D.J.; Von Wehrden, H.; Baumgärtner, S.; Fischer, J.; Hanspach, J.; Härdtle, W.; Heinrichs, H.; Klein, A.M.; Lang, D.J.; Martens, P. Ecosystem services as a boundary object for sustainability. Ecol. Econ. 2014, 103, 29–37. [Google Scholar] [CrossRef]
- Weigel, R.; Koellner, T.; Poppenborg, P.; Bogner, C. Crop diversity and stability of revenue on farms in Central Europe: An analysis of big data from a comprehensive agricultural census in Bavaria. PLoS ONE 2014, 13, e0207454. [Google Scholar] [CrossRef]
- Gardiner, M.M.; Landis, D.A.; Gratton, C.; DiFonzo, C.D.; O’neal, M.; Chacon, J.M.; Wayo, M.T.; Schmidt, N.P.; Mueller, E.E.; Heimpel, G.E. Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. Ecol. Appl. 2009, 19, 143–154. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; O’Rourke, M.E.; Blitzer, E.J.; Kremen, C. A meta-analysis of crop pest and natural enemyponse to landscape complexity. Ecol. Lett. 2011, 14, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intenation and biodiversity–ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Schulte, L.A.; Niemi, J.; Helmers, M.J.; Liebman, M.; Arbuckle, J.G.; James, D.E.; Kolka, R.K.; O’Neal, M.E.; Tomer, M.D.; Tyndall, J.C.; et al. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean agricultural lands. Proc. Natl. Acad. Sci. USA 2017, 114, 11247–11252. [Google Scholar] [CrossRef] [PubMed]
- Raymundo, R.; Mclean, G.; Sexton-Bowser, S.; Lipka, A.E.; Morris, G.P. Crop modeling suggests limited transpiration would increase yield of sorghum across drought-prone regions of the United States. Front. Plant Sci. 2024, 14, 1283339. [Google Scholar] [CrossRef]
- FAO. Agricultural Biodiversity, Multifunctional Character of Agriculture and Land Conference, Back-Ground Paper 1. Maastricht, The Netherlands. 1999. Available online: https://www.fao.org/4/x2775e/X2775E02.htm#P41_7891 (accessed on 6 May 2024).
- World Bank. World Development Report 2008: Agriculture for Development; The World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Eggertsen, M.; Halling, C. Knowledge gaps and management recommendations for future paths of sustainable seaweed farming in the Western Indian Ocean. Ambio 2021, 50, 60–73. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Jehangir, W.A.; Masih, I.; Ahmed, S.; Gill, M.A.; Ahmad, M.; Mann, R.A.; Chaudhary, M.R.; Qureshi, A.S.; Turral, H. Sustaining Crop Water Productivity in Rice-Wheat Systems of South Asia: A Case Study from the Punjab, Pakistan; IWMI: Colombo, Sri Lanka, 2007; p. 115. [Google Scholar]
- Elahi, E.; Zhang, L.; Abid, M.; Altangerel, O.; Bakhsh, K.; Uyanga, B.; Ahmed, U.I.; Xinru, H. Impact of balance use of fertilizers on wheat efficiency in cotton wheat cropping system of Pakistan. Int. J. Agric. Innov. Res. 2015, 3, 1369–1373. [Google Scholar]
- Lichtenberg, E.; Ding, C. Assessing farmland protection policy in China. Land Use Policy 2008, 25, 59–68. [Google Scholar] [CrossRef]
- Li, J.; Li, Z. Physical limitations and challenges to grain security in China. Food Secur. 2014, 6, 159–167. [Google Scholar] [CrossRef]
- Kassie, M.; Teklewold, H.; Marenya, P.; Jaleta, M.; Erenstein, O. Production risks and food security under alternative technology choices in Malawi: Application of a multinomial endogenous switching regression. J. Agric. Econ. 2015, 66, 640–659. [Google Scholar] [CrossRef]
- Truong, D.D.; Dat, T.T.; Huan, H.L. Factors Affecting Climate-Smart Agriculture Practice Adaptation of Farming Households in Coastal Central Vietnam: The Case of Ninh Thuan Province. Front. Sustain. Food Syst. 2022, 6, 790089. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Weijun, C.; Zhang, H. The public policy of agricultural land allotment to agrarians and its impact on crop productivity in Punjab province of Pakistan. Land Use Policy 2020, 90, 104324. [Google Scholar] [CrossRef]
- Raun, W.R.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Mullen, R.W.; Freeman, K.W.; Thomason, W.E.; Lukina, E.V. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron. J. 2002, 94, 815–820. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Abbas, A.; Naqvi, S.A.A.; Rizwan, M.; Samie, A.; Ahmed, U.I. Drivers of farm households’ perceived risk sources and factors affecting uptake of mitigation strategies in Punjab Pakistan: Implications for sustainable agriculture. Sustainability 2020, 12, 9895. [Google Scholar] [CrossRef]
- Ramankutty, N.; Mehrabi, Z.; Waha, K.; Jarvis, L.; Kremen, C.; Herrero, M.; Rieseberg, L.H. Trends in global agricultural land use: Implications for environmental health and food security. Annu. Rev. Plant Biol. 2018, 69, 789–815. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Grote, U.; Neubacher, F.; Do, M.H.; Paudel, G.P. Security risks from climate change and environmental degradation: Implications for sustainable land use transformation in the Global South. Curr. Opin. Environ. Sustain. 2023, 63, 101322. [Google Scholar] [CrossRef]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 2022, 12, 1–13. [Google Scholar]
- Owley, J.; Morris, A.W. The new agriculture: From food farms to solar farms. Colum. J. Envtl. L. 2022, 44, 409. [Google Scholar]
- Franks, J.R.; Hadingham, B. Reducing greenhouse gas emissions from agriculture: Avoiding trivial solutions to a global problem. Land Use Policy 2012, 29, 727–736. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Salvatore, M.; Rossi, S.; Ferrara, A.; Fitton, N.; Smith, P. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 2013, 8, 015009. [Google Scholar] [CrossRef]
- Wollenberg, E.; Richards, M.; Smith, P.; Havlík, P.; Obersteiner, M.; Tubiello, F.N.; Herold, M.; Gerber, P.; Carter, S.; Reisinger, A.; et al. Reducing emissions from agriculture to meet the 2 C target. Glob. Change Biol. 2016, 22, 3859–3864. [Google Scholar] [CrossRef] [PubMed]
- Lenerts, A.; Popluga, D.; Naglis-Liepa, K. Benchmarking the GHG emissions intensities of crop and livestock–derived agricultural commodities produced in Latvia. Agron. Res. 2019, 17, 1942–1952. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Roberts, D.C.; Adams, H.; Adler, C.; Aldunce, P.; Ali, E.; Begum, R.A.; Betts, R.; Kerr, R.B.; Biesbroek, R.; et al. SPM-Summary for Policymakers; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Feng, Y.; Zeng, Z.; Searchinger, T.D.; Ziegler, A.D.; Wu, J.; Wang, D. Doubling of annual forest carbon loss over the tropics during the early twenty-first century. Nat. Sustain. 2022, 5, 444–451. [Google Scholar] [CrossRef]
- Brondízio, E.S.; Settele, J.; Diaz, S.; Ngo, H.T. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES: Bonn, Germany, 2009. [Google Scholar]
- Uexkull, N.V.; d’Errico, M.; Jackson, J. Drought, resilience, and support for violence: Household survey evidence from DR Congo. J. Confl. Resolut. 2020, 64, 1994–2021. [Google Scholar] [CrossRef]
- Maertens, R. Adverse rainfall shocks and civil war: Myth or reality? J. Confl. Resolut. 2021, 65, 701–728. [Google Scholar] [CrossRef]
- Hermans, K.; McLeman, R. Climate change, drought, land degradation and migration: Exploring the linkages. Curr. Opin. Environ. Sustain. 2021, 50, 236–244. [Google Scholar] [CrossRef]
- Koubi, V.; Nguyen, Q.; Spilker, G.; Böhmelt, T. Environmental migrants and social-movement participation. J. Peace Res. 2021, 58, 18–32. [Google Scholar] [CrossRef]
- Bosetti, V.; Cattaneo, C.; Peri, G. Should they stay or should they go? Climate migrants and local conflicts. J. Econ. Geogr. 2021, 21, 619–651. [Google Scholar] [CrossRef]
- Vesco, P.; Dasgupta, S.; De Cian, E.; Carraro, C. Natural resources and conflict: A meta-analysis of the empirical literature. Ecol. Econ. 2020, 172, 106633. [Google Scholar] [CrossRef]
- Bernauer, T.; Böhmelt, T. International conflict and cooperation over freshwater resources. Nat. Sustain. 2020, 3, 350–356. [Google Scholar] [CrossRef]
- Scartozzi, C.M. Reframing climate-induced socio-environmental conflicts: A systematic review. Int. Stud. Rev. 2021, 23, 696–725. [Google Scholar] [CrossRef]
- Hayek, M.N.; Miller, S.M. Underestimates of methane from intensively raised animals could undermine goals of sustainable development. Environ. Res. Lett. 2021, 16, 063006. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, J.; Tian, H.; Shi, H.; Dong, J.; Song, C.; Li, X.; Du, G.; Hou, Y.; Lu, D.; et al. Agricultural land redistribution to marginal lands undermines environmental sustainability. Natl. Sci. Rev. 2022, 9, nwab091. [Google Scholar] [CrossRef] [PubMed]
- Chopra, R.; Magazzino, C.; Shah, M.I.; Sharma, G.D.; Rao, A.; Shahzad, U. The role of renewable energy and natural resources for sustainable agriculture in ASEAN countries: Do carbon emissions and deforestation affect agriculture productivity? Resour. Policy 2022, 76, 102578. [Google Scholar] [CrossRef]
- Haile, M.G.; Wossen, T.; Tesfaye, K.; von Braun, J. Impact of climate change, weather extremes, and price risk on global food supply. Econ. Disasters Clim. Change 2017, 1, 55–75. [Google Scholar] [CrossRef]
- Gul, N.; Wani, I.A.; Mir, R.A.; Nowshehri, J.A.; Aslam, S.; Gupta, R.; Verma, S.; Aslam, S. Plant growth promoting microorganisms mediated abiotic stress tolerance in crop plants: A critical appraisal. Plant Growth Regul. 2023, 100, 7–24. [Google Scholar] [CrossRef]
- Abbas, S. Global warming and export competitiveness of agriculture sector: Evidence from heterogeneous econometric analysis of Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 34325–34337. [Google Scholar] [CrossRef]
- Nath, P.K.; Behera, B. A critical review of impact of and adaptation to climate change in developed and developing economies. Environ. Dev. Sustain. 2011, 13, 141–162. [Google Scholar] [CrossRef]
- Hossain, S.S.; Cui, Y.; Delin, H.; Zhang, X. The economic influence of climate change on Bangladesh agriculture: Application of a dynamic computable general equilibrium model. Int. J. Clim. Change Strateg. Manag. 2023, 15, 353–370. [Google Scholar] [CrossRef]
- Alharthi, M.; Dogan, E.; Taskin, D. Analysis of CO2 emissions and energy consumption by sources in MENA countries: Evidence from quantile regressions. Environ. Sci. Pollut. Res. 2021, 28, 38901–38908. [Google Scholar] [CrossRef]
- Ochieng, J.; Kirimi, L.; Mathenge, M. Effects of climate variability and change on agricultural production: The case of small scale farmers in Kenya. NJAS-Wagening. J. Life Sci. 2016, 77, 71–78. [Google Scholar] [CrossRef]
- Schmidhuber, J.; Bruinsma, J.; Boedeker, G. Capital requirements for agriculture in developing countries to 2050. In FAO Expert Meeting on How to Feed the World in 2050; FAO: Rome, Italy, 2009; pp. 24–26. [Google Scholar]
- Khoury, C.K.; Bjorkman, A.D.; Dempewolf, H.; Ramirez-Villegas, J.; Guarino, L.; Jarvis, A.; Rieseberg, L.H.; Struik, P.C. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl. Acad. Sci. USA 2014, 111, 4001–4006. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D. The ecological consequences of changes in biodiversity: A search for general principles. Ecology 1999, 80, 1455–1474. [Google Scholar] [CrossRef]
- Horrigan, L.; Lawrence, R.S.; Walker, P. How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ. Health Perspect. 2002, 110, 445–456. [Google Scholar] [CrossRef]
- Robinson, R.A.; Sutherland, W.J. Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 2002, 39, 157–176. [Google Scholar] [CrossRef]
- Benton, T.G.; Vickery, J.A.; Wilson, J.D. Farmland biodiversity: Is habitat heterogeneity the key? Trends Ecol. Evol. 2003, 18, 182–188. [Google Scholar] [CrossRef]
- Bianchi, F.J.; Booij, C.J.H.; Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B Biol. Sci. 2006, 273, 1715–1727. [Google Scholar] [CrossRef]
- Rabalais, N.N.; Turner, R.E.; Wiseman, W.J., Jr. Gulf of Mexico hypoxia, aka “The dead zone”. Annu. Rev. Ecol. Syst. 2002, 33, 235–263. [Google Scholar] [CrossRef]
- Hillier, J.; Hawes, C.; Squire, G.; Hilton, A.; Wale, S.; Smith, P. The carbon footprints of food crop production. Int. J. Agric. Sustain. 2009, 7, 107–118. [Google Scholar] [CrossRef]
- Hooper, D.U.; Adair, E.C.; Cardinale, B.J.; Byrnes, J.E.; Hungate, B.A.; Matulich, K.L.; Gonzalez, A.; Duffy, J.E.; Gamfeldt, L.; O’Connor, M.I. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 2012, 486, 105–108. [Google Scholar] [CrossRef]
- Cassman, K.G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. USA 1999, 96, 5952–5959. [Google Scholar] [CrossRef] [PubMed]
- Pywell, R.F.; Heard, M.S.; Woodcock, B.A.; Hinsley, S.; Ridding, L.; Nowakowski, M.; Bullock, J.M. Wildlife-friendly farming increases crop yield: Evidence for ecological intensification. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151740. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; Al-Tohamy, R.; Koutra, E.; Moawad, M.S.; Kornaros, M.; Mustafa, A.M.; Mahmoud, Y.A.-G.; Badr, A.; Osman, M.E.H.; Elsamahy, T.; et al. Nano biotechnological advancements in agriculture and food industry: Applications, nano toxicity, and future perspectives. Sci. Total Environ. 2021, 792, 148359. [Google Scholar] [CrossRef] [PubMed]
- Arslan, A.; Floress, K.; Lamanna, C.; Lipper, L.; Rosenstock, T.S. A meta-analysis of the adoption of agricultural technology in Sub-Saharan Africa. PLoS Sustain. Transform. 2022, 1, e0000018. [Google Scholar] [CrossRef]
- Arif, M.; Jan, T.; Munir, H.; Rasul, F.; Riaz, M.; Fahad, S.; Adnan, M.; Mian, I.A.; Amanullah. Climate-smart agriculture: Assessment and adaptation strategies in changing climate. Glob. Clim. Change Environ. Policy Agric. Perspect. 2020, 351–377. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y. An autoregressive distributed lag modelling approach to cointegration analysis. In Econometrics and Economic Theory in 20th Century: The Ragnar Frisch Centennial Symposium; Strom, S., Ed.; Cambridge University Press: Cambridge, UK, 1999; pp. 371–413. [Google Scholar]
- Pesaran, M.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econ. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Hao, Y. The relationship between LNG price, LNG revenue, non-LNG revenue and government spending in China: An empirical analysis based on the ARDL and SVAR model. Energy Environ. 2021, 34, 131–154. [Google Scholar] [CrossRef]
- Engle, R.F.; Granger, C.W. Cointegration and error correction: Representation, estimation and testing. Econometrica 1987, 55, 251–276. [Google Scholar] [CrossRef]
- Narayan, P.K. The saving and investment nexus for China: Evidence from cointegration tests. Appl. Econ. 2009, 37, 1979–1990. [Google Scholar] [CrossRef]
- Odhiambo, N.M. Finance-growth-poverty nexus in South Africa: A dynamic causality linkage. J. Socio-Econ. 2009, 38, 320–325. [Google Scholar] [CrossRef]
- Kalai, M.; Zghidi, N. Foreign direct investment, trade, and economic growth in MENA countries: Empirical analysis using ARDL bounds testing approach. J. Knowl. Econ. 2019, 10, 397–421. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Perron, P. Trends and random walks in macroeconomic time series: Further evidence from a new approach. J. Econ. Dyn. Control. 1988, 12, 297–332. [Google Scholar] [CrossRef]
- Qamruzzaman, M.; Wei, J. Financial innovation, stock market development, and economic growth: An application of ARDL model. Int. J. Financ. Stud. 2018, 6, 69. [Google Scholar] [CrossRef]
- Fofana, I.; Omolo, M.W.; Goundan, A.; Magne Domgho, L.V.; Collins, J.; Marti, E. NAIP Toolkit for Malabo Domestication: Economic Modeling of Agricultural Growth and Investment Strategy, Case Study of Kenya; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2019; Volume 1813. [Google Scholar]
- Wu, W.; Verburg, P.; Tang, H. Climate change and the food production system: Impacts and adaptation in China. Reg. Environ. Change 2014, 14, 1–5. [Google Scholar] [CrossRef]
- Ju, H.; van der Velde, M.; Lin, E.; Xiong, W.; Li, Y. The impacts of climate change on agricultural production systems in China. Clim. Change 2013, 120, 313–324. [Google Scholar] [CrossRef]
- Liu, Z.; Hubbard, K.G.; Lin, X.; Yang, X. Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Glob. Change Biol. 2013, 19, 3481–3492. [Google Scholar] [CrossRef]
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef]
- Pisa, L.; Goulson, D.; Yang, E.C.; Gibbons, D.; Sánchez-Bayo, F.; Mitchell, E.; Aebi, A.; van der Sluijs, J.; MacQuarrie, C.J.K.; Giorio, C.; et al. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: Impacts on organisms and ecosystems. Environ. Sci. Pollut. Res. 2017, 28, 11749–11797. [Google Scholar] [CrossRef]
- Susca, T.; Gaffin, S.R.; Dell’Osso, G.R. Positive effects of vegetation: Urban heat island and green roofs. Environ. Pollut. 2011, 159, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Lwasa, S.; Mugagga, F.; Wahab, B.; Simon, D.; Connors, J.; Griffith, C. Urban and peri-urban agriculture and forestry: Transcending poverty alleviation to climate change mitigation and adaptation. Urban Clim. 2014, 7, 92–106. [Google Scholar] [CrossRef]
- Pataki, D.E.; Carreiro, M.M.; Cherrier, J.; Grulke, N.E.; Jennings, V.; Pincetl, S.; Pouyat, R.V.; Whitlow, T.H.; Zipperer, W. Coupling bio-geochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Front. Ecol. Environ. 2011, 9, 27–36. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, S.; Huntzinger, D.N.; Michalak, A.M.; Viovy, N.; Post, W.M.; Schwalm, C.R.; Schaefer, K.; Jacobson, A.R.; Lu, C.; et al. The North American carbon program multi-scale synthesis and terrestrial model inter comparison project—Part 2: Environmental driver data. Geosci. Model. Dev. Discuss. 2014, 7, 2875–2893. [Google Scholar] [CrossRef]
- Heinberg, R.; Bomford, M. The Food and Farming Transition: Toward a Post Carbon Food System; Post Carbon Institute: Sebastopol, CA, USA, 2009; Volume 41. [Google Scholar]
- Paxton’, A. The Food Miles Report: The Dangers of Long Distance Food Transport; SAFE: London, UK, 1994. [Google Scholar]
- Pedroni, P. Fully modified OLS for heterogeneous cointegrated panels. In Nonstationary Panels, Panel Cointegration, and Dynamic Panels; Emerald Group Publishing Limited: Bingley, UK, 2001; pp. 93–130. [Google Scholar]
- Yang, S.; Cui, X. Large-Scale production: A possible way to the balance between feed grain security and meat security in China. J. Agric. Food Res. 2023, 14, 100745. [Google Scholar] [CrossRef]
- Huang, J.; Rozelle, S.; Rosegrant, M.W. China’s food economy to the twenty-first century: Supply, demand, and trade. Econ. Dev. Cult. Change 1999, 47, 737–766. [Google Scholar] [CrossRef]
- Song, W.; Pijanowski, B.C. The effects of China’s cultivated land balance program on potential land productivity at a national scale. Appl. Geogr. 2014, 46, 158–170. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Cultivated land protection and rational use in China. Land Use Policy 2021, 106, 105454. [Google Scholar] [CrossRef]
- Chen, R.; Ye, C.; Cai, Y.; Xing, X.; Chen, Q. The impact of rural out-migration on land use transition in China: Past, present and trend. Land Use Policy 2014, 40, 101–110. [Google Scholar] [CrossRef]
- Quaye, A.K.; Hall, C.A.; Luzadis, V.A. Agricultural land use efficiency and food crop production in Ghana. Environ. Dev. Sustain. 2010, 12, 967–983. [Google Scholar] [CrossRef]
- Wang, Y.S. The challenges and strategies of food security under rapid urbanization in China. Sustainability 2019, 11, 542. [Google Scholar] [CrossRef]
Study Variables | Notation | Description Detail | Data Source |
---|---|---|---|
Agricultural Land | AGL | Agricultural land (% of land area) | WDI |
Food Production | FP | Index of food production (taken as 2014–2016 = 100) | WDI |
Crop Production | CP | Index of crop production (taken as 2014–2016 = 100) | WDI |
CO2 Emission | CO2 | Emissions of CO2 (calculated as metric tons per capita) | WDI |
Environmental Sustainability | ES | The (ES) is the dummy variable indicated by 1 for high environmental sustainability and zero otherwise. It is measured by the median split of the variable CO2 emission and considered above median high CO2 emission and below median low CO2 emission. Therefore, low CO2 emission is regarded as 1 to compute the dummy variable (ES) environmental sustainability variable. | WDI |
GDP Growth | GDPG | GDP growth (calculated as annual %) | WDI |
Urban population | UP | Urban population (calculated as % of total population) | WDI |
Inflation | INF | Inflation, GDP deflator (annual %) | WDI |
Variables | Mean | SD | Min | Max |
---|---|---|---|---|
AGL | 5,249,922 | 51,972.09 | 5,065,920 | 5,290,386 |
FP | 75.5422 | 22.0192 | 37.14 | 103.25 |
CP | 75.8363 | 22.0445 | 41.61 | 108.35 |
CO2 | 6,329,919 | 3,243,210 | 2,173,360 | 1.10 × 107 |
GDPG | 9.0808 | 2.7434 | 2.2397 | 14.2309 |
UP | 3.5062 | 0.7274 | 1.8385 | 4.6017 |
INF | 4.6640 | 4.8554 | −1.2631 | 20.6170 |
AGL | FP | CP | CO2 | GDPG | UP | INF | |
---|---|---|---|---|---|---|---|
AGL | 1 | ||||||
FP | 0.8115 *** | 1 | |||||
CP | 0.7638 *** | 0.9950 *** | 1 | ||||
CO2 | 0.7084 *** | 0.9706 *** | 0.9827 *** | 1 | |||
GDPG | −0.0729 | −0.4422 *** | −0.4752 *** | −0.4354 *** | 1 | ||
UP | −0.6339 *** | −0.9204 *** | −0.9458 *** | −0.9376 *** | 0.5494 *** | 1 | |
INF | −0.2871 | −0.4612 *** | −0.4451 *** | −0.3509 ** | 0.6111 *** | 0.3952 ** | 1 |
Variables | Dependent Variable: FP | Dependent Variable: CP | ||
---|---|---|---|---|
AGL | 0.0001 *** (3.81) | 0.0001 *** (7.69) | 0.0001 *** (5.69) | 0.0001 *** (4.40) |
AGL*ES | 9.98 × 107 ** (2.12) | 8.72 × 107 * (1.93) | ||
CO2 | 2.78 × 106 *** (9.84) | 4.81 × 106 *** (7.94) | 4.15 × 106 *** (11.20) | 5.47 × 106 *** (9.05) |
GDPG | −0.5588 *** (−3.53) | 0.5081 (1.46) | −0.4956 * (−1.81) | −0.0875 (−0.33) |
UP | 2.9798 ** (2.44) | −5.7270 ** (−2.38) | −5.6367 *** (−2.92) | −4.5641 ** (−2.41) |
INF | −0.1047 (−1.58) | −0.5603 *** (−4.70) | −0.2874 *** (−2.77) | −0.3757 *** (−3.18) |
Constant | −485.6142 *** (−6.61) | −606.0189 *** (−7.17) | −486.2795 *** (−4.92) | −254.785 *** (−3.68) |
F-test | 912.25 | 413.05 | 672.79 | 448.81 |
Prob. | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
R2 | 0.9979 | 0.9904 | 0.9926 | 0.9908 |
Obs. | 32 | 32 | 32 | 32 |
Variables of the Study | (Test of ADF) | (Test of PP) | ||
---|---|---|---|---|
I(0) | I(1) | I(0) | I(1) | |
AGL | −2.6301 (0.0983) | −6.0738 *** (0.0000) | −2.8447 (0.0641) | −6.1327 *** (0.0000) |
CP | 0.8849 (0.7791) | −7.1586 *** (0.0000) | −0.5358 (0.8708) | −7.2308 *** (0.0000) |
FP | −2.7952 0.0706 | −7.7141 *** (0.0000) | −2.4831 (0.1291) | −4.3910 *** (0.0016) |
CO2 | −0.5934 (0.8577) | −6.1612 *** (0.0000) | −0.0413 (0.9474) | −6.6650 *** (0.0000) |
GDPG | −2.8453 (0.0637) | −4.6580 *** (0.0008) | −3.1310 (0.0345) | −4.7027 *** (0.0007) |
UP | 1.4077 (0.9985) | −4.8629 *** (0.0005) | 1.8590 (0.9996) | −4.8629 *** (0.0005) |
INF | −2.8845 (0.0591) | −4.8944 *** (0.0005) | −2.4923 (0.1270) | −4.7076 *** (0.0007) |
Models Selected | F-Value | Sig. | I(0) | I(1) | Cointegration |
---|---|---|---|---|---|
FP = f (AGL, CO2, GDPG, UP, INF) (2, 1, 0, 2, 0, 2) K = 5, AIC = 2.7007 | 6.8319 | 10% | 2.26 | 3.35 | Accepted |
5% | 2.62 | 3.79 | |||
2.5% | 2.96 | 4.18 | |||
1% | 3.41 | 4.68 | |||
CP = f (AGL, CO2, GDPG, UP, INF) (3, 2, 2, 3, 3, 3) K = 5, AIC = 1.4670 | 14.9564 | 10% | 2.26 | 3.35 | Accepted |
5% | 2.62 | 3.79 | |||
2.5% | 2.96 | 4.18 | |||
1% | 3.41 | 4.68 | |||
FP = f (AGL, AGL*ES, CO2, GDPG, UP, INF) (2, 1, 2, 1, 2, 0, 2) K = 5, AIC = 2.8277 | 3.9967 | 10% | 2.26 | 3.35 | Accepted |
5% | 2.62 | 3.79 | |||
2.5% | 2.96 | 4.18 | |||
1% | 3.41 | 4.68 | |||
CP = f (AGL, AGL*ES, CO2, GDPG, UP, INF) (2, 3, 3, 3, 3, 3, 1) K = 6, AIC = 0.9670 | 9.5680 | 10% | 2.26 | 3.35 | Accepted |
5% | 2.62 | 3.79 | |||
2.5% | 2.96 | 4.18 | |||
1% | 3.41 | 4.68 |
Dependent Variable (FP) | Dependent Variable (CP) | |||
---|---|---|---|---|
AGL | 0.0001 *** (6.9940) [1.71 × 105] | 0.0001 *** (3.9539) [1.50 × 105] | 7.33 × 105 *** (3.9539) [1.85 × 105] | 6.21 × 105 *** (3.9788) [1.56 × 105] |
AGL*ES | 9.71× 107 ** (2.2401) [4.33 × 107 ] | 1.24 × 106 *** (2.7604) [4.50 × 107] | ||
CO2 | 4.36 × 106 *** (9.5781) [4.55 × 107] | 5.35 × 106 *** (9.7160) [5.51 × 107] | 4.30 × 106 *** (8.7222) [4.93 × 107] | 5.57 × 107 *** (9.7240) [5.72 × 107] |
GDPG | −0.2534 (−0.8592) [0.2950] | −0.0858 (−0.3041) [0.2822] | −0.2560 (−0.8016) [0.3194] | −0.0236 (−0.0804) [0.2933] |
UP | −2.1702 (−0.8592) [2.0269] | −1.8714 (−1.0517) [1.7795] | −5.7365 ** (−2.6137) [2.1948] | −5.2745 *** (−2.8520) [1.8494] |
INF | −0.5314 *** (−4.2834) [0.1241] | −0.5336 *** (−4.8674) [0.1096] | −0.3995 *** (−2.9741) [0.1343] | −0.4090 *** (−3.5901) [0.1139] |
C | −567.9489 *** (3.9539) [88.2387] | −526.9110 *** (−6.7869) [77.6371] | −6.4365 *** (−6.7868) [77.6371] | −268.0355 *** (−3.3219) [80.6875] |
Model | Test | Parameters | Value | Probability |
---|---|---|---|---|
CP = f (AGL, CO2, GDPG, UP, INF) | LM Test | F-Test | 0.0081 | 0.9311 |
Obs*R2 | 0.0392 | 0.8431 | ||
ARCH | F-Test | 0.4497 | 0.5084 | |
Obs*R-squared | 0.4760 | 0.4902 | ||
RESET Test (Ramsey) | t-test statistic | 0.1227 | 0.9063 | |
F-statistic | 0.0151 | 0.9063 | ||
Jarque–Bera | 0.6179 | 0.7342 | ||
f (AGL, CO2, GDPG, UP, INF) | LM Test | F-Test | 1.6194 | 0.2308 |
Obs*R2 | 5.3274 | 0.0697 | ||
ARCH | F-Test | 0.0404 | 0.8423 | |
Obs*R-squared | 0.0433 | 0.8352 | ||
RESET Test (Ramsey) | t-test statistic | 2.1770 | 0.0763 | |
F-statistic | 4.7393 | 0.0948 | ||
Jarque–Bera | 0.3776 | 0.8280 | ||
FP = f (AGL, AGL*ES, CO2, GDPG, UP, INF) | LM Test | F-Test | 2.3611 | 0.1409 |
Obs*R2 | 3.4265 | 0.0642 | ||
ARCH | F-Test | 0.0704 | 0.7928 | |
Obs*R-squared | 0.0752 | 0.7839 | ||
RESET Test (Ramsey) | t-test statistic | 1.2331 | 0.2326 | |
F-statistic | 1.5206 | 0.2326 | ||
Jarque–Bera | 0.1432 | 0.9309 | ||
CP = f (AGL, AGL*ES, CO2, GDPG, UP, INF) | LM Test | F-Test | 1.5776 | 0.2271 |
Obs*R2 | 2.6925 | 0.1008 | ||
ARCH | F-Test | 0.2889 | 0.5953 | |
Obs*R-squared | 0.3070 | 0.5795 | ||
RESET Test (Ramsey) | t-test statistic | 1.2353 | 0.2403 | |
F-statistic | 1.5261 | 0.2403 | ||
Jarque–Bera | 0.7654 | 0.6820 |
Variables (Dependent_ | Variable | Coefficients of Estimation | Std:_Error | t-Test Statistic | Prob. |
---|---|---|---|---|---|
FP | C | −1349.174 | 41.3004 | −32.6674 | 0.0001 |
D(AGL) | 0.0001 | 8.59 × 106 | 15.3559 | 0.0006 | |
D(CO2) | 2.81 × 106 | 1.90 × 107 | 14.8005 | 0.0007 | |
D(GDPG) | 0.2809 | 0.0317 | 8.8736 | 0.0030 | |
D(UP) | 2.5890 | 0.3349 | 7.7311 | 0.0045 | |
D(INF) | −0.0044 | 0.0129 | −0.3441 | 0.7535 | |
ECM(−1) * | −1.3375 | 0.0410 | −32.6464 | 0.0001 | |
R-squared | 0.9972 | ||||
Adj. R2 | 0.9906 | ||||
S.E.R | 0.1276 | ||||
S.S.R | 0.1302 | ||||
F-value | 151.5496 | ||||
Prob. | 0.0000 | ||||
DW | 3.2018 | ||||
CP | C | 55.5896 | 4.4780 | 12.4139 | 0.0000 |
D(AGL) | −0.0001 | 1.84 × 105 | −6.9557 | 0.0002 | |
D(CO2) | 2.04 × 106 | 4.59 × 107 | 4.4419 | 0.0030 | |
D(GDPG) | −0.0562 | 0.0733 | −0.7676 | 0.4678 | |
D(UP) | −1.7542 | 0.7310 | −2.3998 | 0.0475 | |
D(INF) | 0.5472 | 0.0589 | 9.2966 | 0.0000 | |
ECM(−1) * | −0.5358 | 0.0432 | −12.4031 | 0.0000 | |
R-squared | 0.9674 | ||||
Adj. R2 | 0.9240 | ||||
S.E.R | 0.3668 | ||||
S.S.R | 1.6147 | ||||
F-Test | 22.2781 | ||||
Prob. | 0.0000 | ||||
DW | 2.0392 | ||||
FP | C | −1916.038 | 158.4831 | −12.0899 | 0.0001 |
D(AGL) | 0.0002 | 2.00 × 105 | 10.3814 | 0.0001 | |
D(AGL*ES) | −7.62 × 107 | 1.49 × 105 | −5.1057 | 0.0038 | |
D(CO2) | 5.58 × 106 | 7.20 × 107 | 7.7576 | 0.0006 | |
D(GDPG) | 0.2024 | 0.0972 | 2.0833 | 0.0917 | |
D(UP) | 0.4921 | 0.9202 | 0.5348 | 0.6157 | |
D(INF) | −0.1203 | 0.0415 | −2.9032 | 0.0337 | |
ECM(−1) * | −1.3345 | 0.1103 | −12.1006 | 0.0001 | |
R-squared | 0.9535 | ||||
Adj. R2 | 0.8817 | ||||
S.E.R | 0.4576 | ||||
S.S.R | 2.3035 | ||||
F-Test | 13.2793 | ||||
Prob. | 0.0001 | ||||
DW | 2.5609 | ||||
CP | C | −350.6142 | 27.3093 | −12.8386 | 0.0002 |
D(AGL) | 6.91 × 105 | 6.18 × 106 | 11.1896 | 0.0004 | |
D(AGL*ES) | 1.33 × 106 | 1.10 × 107 | 12.0819 | 0.0003 | |
D(CO2) | −4.94 × 106 | 5.41 × 107 | −9.1338 | 0.0008 | |
D(GDPG) | 1.2264 | 0.1005 | 12.2080 | 0.0003 | |
D(UP) | −2.0718 | 0.6775 | −3.0578 | 0.0377 | |
D(INF) | 0.1546 | 0.0362 | 4.2692 | 0.0130 | |
ECM(−1) * | −0.3740 | 0.0289 | −12.9398 | 0.0002 | |
R-squared | 0.9844 | ||||
Adj. R2 | 0.9563 | ||||
S.E.R | 0.2822 | ||||
S.S.R | 0.7964 | ||||
F-Test | 35.0263 | ||||
Prob. | 0.0000 | ||||
DW | 3.0821 |
Cause | → | Effect | Test Statistics | Significance Value |
---|---|---|---|---|
FP | → | CP | 10.8814 | 0.1439 |
CP | → | FP | 21.8312 | 0.0027 |
FP | → | AGL | 72.8310 | 0.0000 |
AGL | → | FP | 23.3955 | 0.0015 |
CP | → | AGL | 65.1300 | 0.0000 |
AGL | → | CP | 13.6004 | 0.0288 |
Study Models | Theil (U) | Bias Proportion Ratio (UM) | Variance Proportion Ratio (US) | Covariance Proportion Ratio (UC) |
---|---|---|---|---|
1 | 0.0038 | 0.0000 | 0.0002 | 0.9997 |
2 | 0.0048 | 0.0000 | 0.0003 | 0.9996 |
3 | 0.0034 | 0.0000 | 0.0002 | 0.9998 |
4 | 0.0049 | 0.0000 | 0.0004 | 0.9996 |
Variables and Statistics | FMOLS | DOLS | ||||||
---|---|---|---|---|---|---|---|---|
FP | CP | FP | CP | |||||
AGL | 0.0001 *** (6.99) | 0.0001 *** (7.30) | 7.33 × 105 *** (3.95) | 6.21 × 105*** (3.97) | 0.0002 *** (6.13) | 0.000288 *** (8.14) | 0.0002 ** (2.78) | 0.0001 *** (1.58) |
AGL*ES | 9.71 × 107 ** (2.24) | 1.24 × 106 *** (2.76) | 3.84 × 107 *** (5.71) | 2.98 × 106 * (2.36) | ||||
CO2 | 4.36 × 106 *** (9.578) | 5.35 × 106 *** (9.71) | 4.30 × 106 *** (8.72) | 5.572 × 107 *** (9.72) | 3.30 × 106 *** (6.91) | 3.03 × 107 *** (5.95) | 3.34 × 106 *** (3.87) | 5.37 × 106 *** (5.15) |
GDPG | −0.2534 (−0.85) | −0.0858 (−0.30) | −0.2560 (−0.80)− | −0.0236 (−0.08) | −0.7233 * (−2.13) | −2.2693 * (−2.21) | −1.0715 (−1.75) | 2.3948 (1.14) |
UP | −2.1702 (−1.0707) | −1.8714 (−1.05) | −5.7365** (−2.61) | −5.2745 *** (−2.85) | −3.8727 * (−1.85) | −0.4625 (−0.15) | −6.6308 (−1.76) | −1.8287 ** (−2.98) |
INF | −0.5314 *** (−4.28) | −0.5336 *** (−4.86) | −0.3995 *** (−2.97) | −0.4090 *** (−3.59) | −0.2228 (−1.65) | −0.014871 (−0.08) | 0.01644 (0.07) | −0.6610 (1.80) |
Constant | −567.9489 *** (−6.43) | −526.9110 *** (−6.78) | −311.6432 *** (−3.26) | −268.0355 *** (−3.32) | −1188.867 *** (−5.91) | −1434.071 *** (−7.87) | −949.1216 ** (−2.61) | −521.0299 ** (−2.40) |
R-Squared | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
Adj. R-Squared | 0.98 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
obs | 31 | 31 | 31 | 31 | 29 | 29 | 29 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laghari, F.; Ahmed, F.; Ansari, B.; Silveira Ferreira, P.J. Agricultural Land, Sustainable Food and Crop Productivity: An Empirical Analysis on Environmental Sustainability as a Moderator from the Economy of China. Sustainability 2025, 17, 1980. https://doi.org/10.3390/su17051980
Laghari F, Ahmed F, Ansari B, Silveira Ferreira PJ. Agricultural Land, Sustainable Food and Crop Productivity: An Empirical Analysis on Environmental Sustainability as a Moderator from the Economy of China. Sustainability. 2025; 17(5):1980. https://doi.org/10.3390/su17051980
Chicago/Turabian StyleLaghari, Fahmida, Farhan Ahmed, Babar Ansari, and Paulo Jorge Silveira Ferreira. 2025. "Agricultural Land, Sustainable Food and Crop Productivity: An Empirical Analysis on Environmental Sustainability as a Moderator from the Economy of China" Sustainability 17, no. 5: 1980. https://doi.org/10.3390/su17051980
APA StyleLaghari, F., Ahmed, F., Ansari, B., & Silveira Ferreira, P. J. (2025). Agricultural Land, Sustainable Food and Crop Productivity: An Empirical Analysis on Environmental Sustainability as a Moderator from the Economy of China. Sustainability, 17(5), 1980. https://doi.org/10.3390/su17051980