Multi-Scale Effect of Land Use Landscape on Basin Streamflow Impacts in Loess Hilly and Gully Region of Loess Plateau: Insights from the Sanchuan River Basin, China
<p>Location of the SRB. (<b>a</b>) The SRB in the Loess Plateau of northwest China, (<b>b</b>) the digital elevation model of the SRB, (<b>c</b>) rivers and major hydrologic stations of the SRB, and (<b>d</b>) soil classification of the SRB. Readers can refer to the official database (<a href="http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/" target="_blank">http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/</a>, accessed on 12 October 2024) for a complete list of soil classes and their definitions.</p> "> Figure 2
<p>Setting scenarios at different LUCCs in upper, middle, and lower basins. (<b>a</b>) Upstream, midstream, and downstream zoning of SRB, and (<b>b</b>) 27 scenarios set up for LUCC in the upstream, midstream, and downstream based on 1980 land use/cover.</p> "> Figure 3
<p>Land use/cover change from 1980 to 2020: (<b>a</b>) land use/cover of the SRB in 1980 and 2020, and (<b>b</b>) Sankey diagram of LUCC from 1980 to 2020.</p> "> Figure 4
<p>LUCC at different buffer scales along the stream. (<b>a</b>) Integrated LUCC dynamics at different buffer scales. (<b>b</b>) Spatial transformation of land use/cover at different buffer scales.</p> "> Figure 5
<p>The comparison data of monthly streamflow volume from 1975 to 1984, between the measured value of the Houdacheng Hydrological Station and the simulated value of the SWAT model.</p> "> Figure 6
<p>Model simulation results of multi-year average streamflow in the SRB under 27 scenarios of different LUCCs in the upper, middle, and lower basins.</p> "> Figure 7
<p>Model simulation results under scenarios of LUCC with different buffer widths. (<b>a</b>) Buffer zones of buffer widths from 150 to 1500 m. (<b>b</b>) Model simulation results of multi-year average streamflow in the SRB under 40 scenarios of LUCC with different buffer widths.</p> "> Figure A1
<p>Scenarios of different land uses in the buffer zone along the river based on 1980 land use.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methodology
2.3.1. LUCC Analysis
2.3.2. SWAT Model
- I.
- SWAT model setup
- II.
- Model calibration and validation
- III.
- Model parameter sensitivity calculation
2.3.3. Scenario Definitions
- Scenario I. Watershed scale: setting scenarios at different LUCCs in upper, middle, and lower basins
- Scenario II. River scale: scenario setting for LUCC with different buffer widths
3. Results and Discussion
3.1. Characteristics of LUCC in the SRB
3.1.1. Land Use/Cover Conversion in SRB
3.1.2. LUCC at Different Buffer Scales Along Rivers
3.2. SWAT Model Calibration and Parameters’ Sensitivity
3.3. Streamflow Response to Multiple Scenarios
3.3.1. Under Scenarios of Different LUCCs in Upper, Middle, and Lower Basins
3.3.2. Under Scenarios of LUCC with Different Buffer Widths
3.3.3. Scaling Effects of LUCC on Streamflow
3.4. A Proposal for Optimizing Landscape Patterns in the SRB for Flow Control
3.5. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Scenario Number | Distribution of Land Use Types | Percentage of Land Use Types (%) | ||||
---|---|---|---|---|---|---|
Upper Sub-Basin | Middle Sub-Basin | Lower Sub-Basin | Forest Land | Grassland | Agricultural Land | |
SI1 | Forest land | Forest land | Forest land | 99.40 | 0.00 | 0.00 |
SI2 | Grassland | 91.80 | 7.60 | 0.00 | ||
SI3 | Agricultural land | 91.80 | 0.00 | 7.60 | ||
SI4 | Grassland | Forest land | 66.61 | 32.79 | 0.00 | |
SI5 | Grassland | 59.01 | 40.39 | 0.00 | ||
SI6 | Agricultural land | 59.01 | 32.79 | 7.60 | ||
SI7 | Agricultural land | Forest land | 66.61 | 0.00 | 32.79 | |
SI8 | Grassland | 59.01 | 7.60 | 32.79 | ||
SI9 | Agricultural land | 59.01 | 0.00 | 40.39 | ||
SI10 | Grassland | Grassland | Forest land | 7.60 | 91.80 | 0.00 |
SI11 | Grassland | 0.00 | 99.40 | 0.00 | ||
SI12 | Agricultural land | 0.00 | 91.80 | 7.60 | ||
SI13 | Forest land | Forest land | 40.39 | 59.01 | 0.00 | |
SI14 | Grassland | 32.79 | 66.61 | 0.00 | ||
SI15 | Agricultural land | 32.79 | 59.01 | 7.60 | ||
SI16 | Agricultural land | Forest land | 7.60 | 59.01 | 32.79 | |
SI17 | Grassland | 0.00 | 66.61 | 32.79 | ||
SI18 | Agricultural land | 0.00 | 59.01 | 40.39 | ||
SI19 | Agricultural land | Agricultural land | Forest land | 7.60 | 0.00 | 91.80 |
SI20 | Grassland | 0.00 | 7.60 | 91.80 | ||
SI21 | Agricultural land | 0.00 | 0.00 | 99.40 | ||
SI22 | Forest land | Forest land | 40.39 | 0.00 | 59.01 | |
SI23 | Grassland | 32.79 | 7.60 | 59.01 | ||
SI24 | Agricultural land | 32.79 | 0.00 | 66.61 | ||
SI25 | Grassland | Forest land | 7.60 | 32.79 | 59.01 | |
SI26 | Grassland | 0.00 | 40.39 | 59.01 | ||
SI27 | Agricultural land | 0.00 | 32.79 | 66.61 |
Scenario Number | Land Use Types Along the River | Buffer Width (m) | Scenario Number | Land Use Types Along the River | Buffer Width (m) |
---|---|---|---|---|---|
SII1 | Forest land | 150 | SII21 | Agricultural land | 150 |
SII2 | Forest land | 300 | SII22 | Agricultural land | 300 |
SII3 | Forest land | 450 | SII23 | Agricultural land | 450 |
SII4 | Forest land | 600 | SII24 | Agricultural land | 600 |
SII5 | Forest land | 750 | SII25 | Agricultural land | 750 |
SII6 | Forest land | 900 | SII26 | Agricultural land | 900 |
SII7 | Forest land | 1050 | SII27 | Agricultural land | 1050 |
SII8 | Forest land | 1200 | SII28 | Agricultural land | 1200 |
SII9 | Forest land | 1350 | SII29 | Agricultural land | 1350 |
SII10 | Forest land | 1500 | SII30 | Agricultural land | 1500 |
SII11 | Grassland | 150 | SII31 | Urban land | 150 |
SII12 | Grassland | 300 | SII32 | Urban land | 300 |
SII13 | Grassland | 450 | SII33 | Urban land | 450 |
SII14 | Grassland | 600 | SII34 | Urban land | 600 |
SII15 | Grassland | 750 | SII35 | Urban land | 750 |
SII16 | Grassland | 900 | SII36 | Urban land | 900 |
SII17 | Grassland | 1050 | SII37 | Urban land | 1050 |
SII18 | Grassland | 1200 | SII38 | Urban land | 1200 |
SII 19 | Grassland | 1350 | SII39 | Urban land | 1350 |
SII 20 | Grassland | 1500 | SII40 | Urban land | 1500 |
Land Use/Cover Types | 2020 | |||||||
---|---|---|---|---|---|---|---|---|
Agricultural Land | Urban Land | Forest Land | Scrubland | Grassland | Wetland | Total | ||
1980 | Agricultural land | 947.99 | 94.29 | 7.96 | 38.47 | 45.34 | 5.09 | 1139.14 |
Urban land | 0.58 | 14.70 | 0 | 0.01 | 0.18 | 0.03 | 15.50 | |
Forest land | 5.41 | 1.50 | 760.37 | 12.56 | 2.29 | 0.27 | 782.40 | |
Scrubland | 11.17 | 4.56 | 9.98 | 1092.76 | 3.53 | 0.42 | 1122.42 | |
Grassland | 53.86 | 28.67 | 3.07 | 6.17 | 971.78 | 2.14 | 1065.69 | |
Wetland | 1.40 | 2.05 | 1.04 | 0.06 | 0.49 | 4.37 | 9.41 | |
Total | 1020.41 | 145.77 | 782.42 | 1150.03 | 1023.61 | 12.32 | 4134.56 |
References
- Chen, L.; Wei, W.; Fu, B.; Lu, Y. Soil and Water Conservation on the Loess Plateau in China: Review and Perspective. Prog. Phys. Geogr.-Earth Environ. 2007, 31, 389–403. [Google Scholar] [CrossRef]
- Kou, P.; Xu, Q.; Jin, Z.; Yunus, A.P.; Luo, X.; Liu, M. Complex Anthropogenic Interaction on Vegetation Greening in the Chinese Loess Plateau. Sci. Total Environ. 2021, 778, 146065. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Lu, Y.; Fu, B.; Comber, A.J.; Harris, P. Quantifying the Effect of Ecological Restoration on Runoff and Sediment Yields: A Meta-Analysis for the Loess Plateau of China. Prog. Phys. Geogr.-Earth Environ. 2017, 41, 753–774. [Google Scholar] [CrossRef]
- Sterling, S.M.; Ducharne, A.; Polcher, J. The Impact of Global Land-Cover Change on the Terrestrial Water Cycle. Nat. Clim. Chang. 2013, 3, 385–390. [Google Scholar] [CrossRef]
- Li, B.; Shi, X.; Lian, L.; Chen, Y.; Chen, Z.; Sun, X. Quantifying the Effects of Climate Variability, Direct and Indirect Land Use Change, and Human Activities on Runoff. J. Hydrol. 2020, 584, 124684. [Google Scholar] [CrossRef]
- Cuo, L.; Zhang, Y.; Gao, Y.; Hao, Z.; Cairang, L. The Impacts of Climate Change and Land Cover/Use Transition on the Hydrology in the Upper Yellow River Basin, China. J. Hydrol. 2013, 502, 37–52. [Google Scholar] [CrossRef]
- Yang, L.; Feng, Q.; Yin, Z.; Wen, X.; Si, J.; Li, C.; Deo, R.C. Identifying Separate Impacts of Climate and Land Use/Cover Change on Hydrological Processes in Upper Stream of Heihe River, Northwest China. Hydrol. Process. 2017, 31, 1100–1112. [Google Scholar] [CrossRef]
- Boer, M.; Puigdefábregas, J. Effects of Spatially Structured Vegetation Patterns on Hillslope Erosion in a Semiarid Mediterranean Environment:: A Simulation Study. Earth Surf. Process. Landf. 2005, 30, 149–167. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, G.; Mu, X.; Tian, P.; Gao, P.; Sun, W. Changes in Streamflow Regimes and Their Responses to Different Soil and Water Conservation Measures in the Loess Plateau Watersheds, China. Hydrol. Process. 2021, 35, e14401. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gao, P. SOIL EROSION, CONSERVATION, AND ECO-ENVIRONMENT CHANGES IN THE LOESS PLATEAU OF CHINA. Land Degrad. Dev. 2013, 24, 499–510. [Google Scholar] [CrossRef]
- Zhang, X.; Song, J.; Wang, Y.; Sun, H.; Li, Q. Threshold Effects of Vegetation Coverage on Runoff and Soil Loss in the Loess Plateau of China: A Meta-Analysis. Geoderma 2022, 412, 115720. [Google Scholar] [CrossRef]
- Jin, Z.; Guo, L.; Yu, Y.; Luo, D.; Fan, B.; Chu, G. Storm Runoff Generation in Headwater Catchments on the Chinese Loess Plateau after Long-Term Vegetation Rehabilitation. Sci. Total Environ. 2020, 748, 141375. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhang, L. Hydrological Responses to Conservation Practices in a Catchment of the Loess Plateau, China. Hydrol. Process. 2004, 18, 1885–1898. [Google Scholar] [CrossRef]
- Brown, A.; Zhang, L.; McMahon, T.; Western, A.; Vertessy, R. A Review of Paired Catchment Studies for Determining Changes in Water Yield Resulting from Alterations in Vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Fu, B.-J.; Zhao, W.-W.; Chen, L.-D.; Liu, Z.-F.; Lü, Y.-H. Eco-Hydrological Effects of Landscape Pattern Change. Landsc. Ecol. Eng. 2005, 1, 25–32. [Google Scholar] [CrossRef]
- Van Nieuwenhuyse, B.H.J.; Antoine, M.; Wyseure, G.; Govers, G. Pattern-Process Relationships in Surface Hydrology: Hydrological Connectivity Expressed in Landscape Metrics. Hydrol. Process. 2011, 25, 3760–3773. [Google Scholar] [CrossRef]
- Liu, W.; Shi, C.; Ma, Y.; Li, H.; Ma, X. Land Use and Land Cover Change-Induced Changes of Sediment Connectivity and Their Effects on Sediment Yield in a Catchment on the Loess Plateau in China. CATENA 2021, 207, 105688. [Google Scholar] [CrossRef]
- Michalek, A.; Zarnaghsh, A.; Husic, A. Modeling Linkages between Erosion and Connectivity in an Urbanizing Landscape. Sci. Total Environ. 2021, 764, 144255. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.; Lin, Y.; Shi, W.; Song, Y.; He, X. Balancing Green and Grain Trade. Nat. Geosci. 2015, 8, 739–741. [Google Scholar] [CrossRef]
- Wang, H.; Sun, F.; Xia, J.; Liu, W. Impact of LUCC on Streamflow Based on the SWAT Model over the Wei River Basin on the Loess Plateau in China. Hydrol. Earth Syst. Sci. 2017, 21, 1929–1945. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhao, J.; Rustomji, P.; Hairsine, P. Responses of Streamflow to Changes in Climate and Land Use/Cover in the Loess Plateau, China. Water Resour. Res. 2008, 44, W00A07. [Google Scholar] [CrossRef]
- Ning, T.; Li, Z.; Liu, W. Vegetation Dynamics and Climate Seasonality Jointly Control the Interannual Catchment Water Balance in the Loess Plateau under the Budyko Framework. Hydrol. Earth Syst. Sci. 2017, 21, 1515–1526. [Google Scholar] [CrossRef]
- Li, C.; Li, F.; Dai, Z.; Yang, X.; Cui, X.; Luo, L. Spatial Variation of Gully Development in the Loess Plateau of China Based on the Morphological Perspective. Earth Sci. Inform. 2020, 13, 1103–1117. [Google Scholar] [CrossRef]
- Zhu, T.X. Gully and Tunnel Erosion in the Hilly Loess Plateau Region, China. Geomorphology 2012, 153, 144–155. [Google Scholar] [CrossRef]
- Dang, X.; Sui, B.; Gao, S.; Liu, G.; Wang, T.; Wang, B.; Ning, D.; Bi, W. Regions and Their Typical Paradigms for Soil and Water Conservation in China. Chin. Geogr. Sci. 2020, 30, 643–664. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Chen, H.; Liu, Y. Regional Development Boundary of China’s Loess Plateau: Water Limit and Land Shortage. Land Use Policy 2018, 74, 130–136. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Fu, B.; Feng, X.; Chen, Y. Socio-Ecological Changes on the Loess Plateau of China after Grain to Green Program. Sci. Total Environ. 2019, 678, 565–573. [Google Scholar] [CrossRef]
- Xiang-zhou, X.; Hong-wu, Z.; Ouyang, Z. Development of Check-Dam Systems in Gullies on the Loess Plateau, China. Environ. Sci. Policy 2004, 7, 79–86. [Google Scholar] [CrossRef]
- Han, X.; Lv, P.; Zhao, S.; Sun, Y.; Yan, S.; Wang, M.; Han, X.; Wang, X. The Effect of the Gully Land Consolidation Project on Soil Erosion and Crop Production on a Typical Watershed in the Loess Plateau. Land 2018, 7, 113. [Google Scholar] [CrossRef]
- Song, Y.Y.; Ma, B.B.; Dai, L.H.; Xue, D.Q.; Xia, S.Y.; Wang, P.T. Spatial-Temporal Pattern and Formation Mechanism of County Urbanization on the Chinese Loess Plateau. J. Mt. Sci. 2021, 18, 1093–1111. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, G.; Yang, X.; Xiao, C.; Zhang, Y.; Luo, M. Positive and Negative Terrains on Northern Shaanxi Loess Plateau. J. Geogr. Sci. 2010, 20, 64–76. [Google Scholar] [CrossRef]
- Dai, W.; Yang, X.; Na, J.; Li, J.; Brus, D.; Xiong, L.; Tang, G.; Huang, X. Effects of DEM Resolution on the Accuracy of Gully Maps in Loess Hilly Areas. CATENA 2019, 177, 114–125. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, Y.; Zeng, R.; Yang, Z.; Chen, X.; Zhao, F.; Meng, X. Detection of Land Subsidence Associated with Land Creation and Rapid Urbanization in the Chinese Loess Plateau Using Time Series InSAR: A Case Study of Lanzhou New District. Remote Sens. 2018, 10, 270. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, X.; Chen, H.; Shi, Q. Spatio-Temporal Evolution of the Social-Ecological Landscape Resilience and Management Zoning in the Loess Hill and Gully Region of China. Environ. Dev. 2021, 39, 100616. [Google Scholar] [CrossRef]
- Xiang, K.; Zhao, A.; Liu, H.; Zhang, X.; Zhang, A.; Tian, X.; Jin, Z. Spatiotemporal Evolution and Coupling Pattern Analysis of Urbanization and Ecological Environmental Quality of the Chinese Loess Plateau. Sustainability 2022, 14, 7236. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Tang, B.; Hui, L.; Zhang, W.; Zhang, L.; Jiao, L. Analysis of Temporal and Spatial Dynamics of Ecosystem Services and Trade-Offs/Synergies during Urbanization in the Loess Plateau, China. Land 2023, 12, 2136. [Google Scholar] [CrossRef]
- Xiong, M.; Li, F.; Liu, X.; Liu, J.; Luo, X.; Xing, L.; Wang, R.; Li, H.; Guo, F. Characterization of Ecosystem Services and Their Trade-off and Synergistic Relationships under Different Land-Use Scenarios on the Loess Plateau. Land 2023, 12, 2087. [Google Scholar] [CrossRef]
- Wang, S.; Zhuang, Y.; Cao, Y.; Yang, K. Ecosystem Service Assessment and Sensitivity Analysis of a Typical Mine–Agriculture–Urban Compound Area in North Shanxi, China. Land 2022, 11, 1378. [Google Scholar] [CrossRef]
- Allan, J. Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Piney, G.; Bernal, S.; Abbott, B.W.; Lupon, A.; Marti, E.; Sabater, F.; Krause, S. Riparian Corridors: A New Conceptual Framework for Assessing Nitrogen Buffering Across Biomes. Front. Environ. Sci. 2018, 6, 47. [Google Scholar] [CrossRef]
- Zhang, Y.; Bi, Z.; Zhang, X.; Yu, Y. Influence of Landscape Pattern Changes on Runoff and Sediment in the Dali River Watershed on the Loess Plateau of China. Land 2019, 8, 180. [Google Scholar] [CrossRef]
- Brody, S.D.; Highfield, W.E.; Blessing, R.; Makino, T.; Shepard, C.C. Evaluating the Effects of Open Space Configurations in Reducing Flood Damage along the Gulf of Mexico Coast. Landsc. Urban Plan. 2017, 167, 225–231. [Google Scholar] [CrossRef]
- von Freyberg, J.; Radny, D.; Gall, H.E.; Schirmer, M. Implications of Hydrologic Connectivity between Hillslopes and Riparian Zones on Streamflow Composition. J. Contam. Hydrol. 2014, 169, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Tabacchi, E.; Lambs, L.; Guilloy, H.; Planty-Tabacchi, A.; Muller, E.; Décamps, H. Impacts of Riparian Vegetation on Hydrological Processes. Hydrol. Process. 2000, 14, 2959–2976. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, P.; Shu, W.; Ding, M.; Zhang, H. Influence of Landscape Structures on River Water Quality at Multiple Spatial Scales: A Case Study of the Yuan River Watershed, China. Ecol. Indic. 2021, 121, 107226. [Google Scholar] [CrossRef]
- Ou, Y.; Wang, X.; Wang, L.; Rousseau, A.N. Landscape Influences on Water Quality in Riparian Buffer Zone of Drinking Water Source Area, Northern China. Environ. Earth Sci. 2016, 75, 1–13. [Google Scholar] [CrossRef]
- Dwarakish, G.; Ganasri, B. Impact of Land Use Change on Hydrological Systems: A Review of Current Modeling Approaches. Cogent Geosci. 2015, 1, 1115691. [Google Scholar] [CrossRef]
- Xing, Z.; Ma, M.; Su, Z.; Lv, J.; Yi, P.; Song, W. A Review of the Adaptability of Hydrological Models for Drought Forecasting. Proc. Int. Assoc. Hydrol. Sci. 2020, 383, 261–266. [Google Scholar] [CrossRef]
- Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Bezak, N.; Biddoccu, M.; Cerdà, A.; Chalise, D.; et al. Soil Erosion Modelling: A Global Review and Statistical Analysis. Sci. Total Environ. 2021, 780, 146494. [Google Scholar] [CrossRef]
- Aloui, S.; Mazzoni, A.; Elomri, A.; Aouissi, J.; Boufekane, A.; Zghibi, A. A Review of Soil and Water Assessment Tool (SWAT) Studies of Mediterranean Catchments: Applications, Feasibility, and Future Directions. J. Environ. Manag. 2023, 326, 116799. [Google Scholar] [CrossRef]
- Lei, Z.; Fu, J.; Luo, J.; Cao, L. Attribution Analysis of Runoff Changes in the Sanchuan River Basin of Shanxi Province from the Perspective of Landscape Patterns. Acta Ecol. Sin. 2022, 42, 4946–4958. [Google Scholar]
- Shi, W.; Huang, M. Predictions of Soil and Nutrient Losses Using a Modified SWAT Model in a Large Hilly-Gully Watershed of the Chinese Loess Plateau. Int. Soil Water Conserv. Res. 2021, 9, 291–304. [Google Scholar] [CrossRef]
- Soomro, S.; Hu, C.; Boota, M.W.; Ahmed, Z.; Liu, C.; Han, Z.; Li, X.; Soomro, M.H.A.A. River Flood Susceptibility and Basin Maturity Analyzed Using a Coupled Approach of Geo-Morphometric Parameters and SWAT Model. Water Resour. Manag. 2022, 36, 2131–2160. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. Asabe 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Xiang, X.; Ao, T.; Xiao, Q.; Li, X.; Zhou, L.; Chen, Y.; Bi, Y.; Guo, J. Parameter Sensitivity Analysis of SWAT Modeling in the Upper Heihe River Basin Using Four Typical Approaches. Appl. Sci. 2022, 12, 9862. [Google Scholar] [CrossRef]
- Luo, R.; Xu, Z.; Cheng, L. Application of SWAT Model in Sanchuan River Basin. J. Water Resour. Water Eng. 2008, 5, 28–33. [Google Scholar]
- Upadhyay, P.; Linhoss, A.; Kelble, C.; Ashby, S.; Murphy, N.; Parajuli, P.B. Applications of the SWAT Model for Coastal Watersheds: Review and Recommendations. J. ASABE 2022, 65, 453–469. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Wang, S.; Li, Q.; Li, M. Determining Relative Contributions of Climate Change and Multiple Human Activities to Runoff and Sediment Reduction in the Eastern Loess Plateau, China. CATENA 2023, 232, 107376. [Google Scholar] [CrossRef]
- Sun, P.; Pan, Y.; Wu, Y.; Xiao, P.; Wang, Z. The Effects of Land Use and Cover Changes on Lateral Carbon Losses from an Ungagged Headwater Basin on the Chinese Loess Plateau. J. Hydrol. 2023, 623, 129751. [Google Scholar] [CrossRef]
- Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J. Soil and Water Assessment Tool User’s Manual Version 2000, Grassland; Soil and Water Research Laboratory, Agricultural Research Service and Blackland Research Center, Texas Agricultural Experiment Station: Temple, TX, USA, 2000. [Google Scholar]
- Chen, L.; Wang, G.; Zhong, Y.; Zhao, X.; Shen, Z. Using Site-Specific Soil Samples as a Substitution for Improved Hydrological and Nonpoint Source Predictions. Environ. Sci. Pollut. Res. 2016, 23, 16037–16046. [Google Scholar] [CrossRef]
- Uniyal, B.; Jha, M.K.; Verma, A.K.; Anebagilu, P.K. Identification of Critical Areas and Evaluation of Best Management Practices Using SWAT for Sustainable Watershed Management. Sci. Total Environ. 2020, 744, 140737. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, W.; Zheng, F. Land Use Change in Heihe Catchment on Loess Tableland Based on CA-Markov Model. Trans. Chin. Soc. Agric. Eng. 2010, 26, 346–352. [Google Scholar]
- Huang, H.; Zhou, Y.; Qian, M.; Zeng, Z. Land Use Transition and Driving Forces in Chinese Loess Plateau: A Case Study from Pu County, Shanxi Province. Land 2021, 10, 67. [Google Scholar] [CrossRef]
- Jia, L.; Ma, Q.; Du, C.; Hu, G.; Shang, C. Rapid Urbanization in a Mountainous Landscape: Patterns, Drivers, and Planning Implications. Landsc. Ecol. 2020, 35, 2449–2469. [Google Scholar] [CrossRef]
- Hu, C.; Wu, W.; Zhou, X.; Wang, Z. Spatiotemporal Changes in Landscape Patterns in Karst Mountainous Regions Based on the Optimal Landscape Scale: A Case Study of Guiyang City in Guizhou Province, China. Ecol. Indic. 2023, 150, 110211. [Google Scholar] [CrossRef]
- Shi, Z.; Ma, L.; Zhang, W.; Gong, M. Differentiation and Correlation of Spatial Pattern and Multifunction in Rural Settlements Considering Topographic Gradients: Evidence from Loess Hilly Region, China. J. Environ. Manag. 2022, 315, 115127. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, L.; Su, K.; Bi, G.; Chen, H.; Liu, X.; Yang, Q. Spatiotemporal Characteristics of Rural Restructuring Evolution and Driving Forces in Mountainous and Hilly Areas. Land 2022, 11, 848. [Google Scholar] [CrossRef]
- Wei, W.; Chen, L.; Fu, B.; Huang, Z.; Wu, D.; Gui, L. The Effect of Land Uses and Rainfall Regimes on Runoff and Soil Erosion in the Semi-Arid Loess Hilly Area, China. J. Hydrol. 2007, 335, 247–258. [Google Scholar] [CrossRef]
- Palamuleni, L.G.; Ndomba, P.M.; Annegarn, H.J. Evaluating Land Cover Change and Its Impact on Hydrological Regime in Upper Shire River Catchment, Malawi. Reg. Environ. Change 2011, 11, 845–855. [Google Scholar] [CrossRef]
- Wang, G.; Yang, H.; Wang, L.; Xu, Z.; Xue, B. Using the SWAT Model to Assess Impacts of Land Use Changes on Runoff Generation in Headwaters. Hydrol. Process. 2014, 28, 1032–1042. [Google Scholar] [CrossRef]
- Gay, E.T.; Martin, K.L.; Caldwell, P.V.; Emanuel, R.E.; Sanchez, G.M.; Suttles, K.M. Riparian Buffers Increase Future Baseflow and Reduce Peakflows in a Developing Watershed. Sci. Total Environ. 2023, 862, 160834. [Google Scholar] [CrossRef] [PubMed]
- Sirabahenda, Z.; St-Hilaire, A.; Courtenay, S.C.; van den Heuvel, M.R. Assessment of the Effective Width of Riparian Buffer Strips to Reduce Suspended Sediment in an Agricultural Landscape Using ANFIS and SWAT Models. CATENA 2020, 195, 104762. [Google Scholar] [CrossRef]
- Graziano, M.P.; Deguire, A.K.; Surasinghe, T.D. Riparian Buffers as a Critical Landscape Feature: Insights for Riverscape Conservation and Policy Renovations. Diversity 2022, 14, 172. [Google Scholar] [CrossRef]
- El Kateb, H.; Zhang, H.; Zhang, P.; Mosandl, R. Soil Erosion and Surface Runoff on Different Vegetation Covers and Slope Gradients: A Field Experiment in Southern Shaanxi Province, China. CATENA 2013, 105, 1–10. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, G.; Zhang, Y.; Bai, Y.; Tian, P.; Mu, X.; Tian, X. Linkages between Soil Erosion and Long-Term Changes of Landscape Pattern in a Small Watershed on the Chinese Loess Plateau. CATENA 2023, 220, 106659. [Google Scholar] [CrossRef]
- Ciampalini, R.; Billi, P.; Ferrari, G.; Borselli, L.; Follain, S. Soil Erosion Induced by Land Use Changes as Determined by Plough Marks and Field Evidence in the Aksum Area (Ethiopia). Agric. Ecosyst. Environ. 2012, 146, 197–208. [Google Scholar] [CrossRef]
- Ouyang, W.; Hao, F.; Skidmore, A.K.; Toxopeus, A.G. Soil Erosion and Sediment Yield and Their Relationships with Vegetation Cover in Upper Stream of the Yellow River. Sci. Total Environ. 2010, 409, 396–403. [Google Scholar] [CrossRef]
- Fu, Y.; Ma, W. Sustainable Urban Community Development: A Case Study from the Perspective of Self-Governance and Public Participation. Sustainability 2020, 12, 617. [Google Scholar] [CrossRef]
- Yang, G.; Yu, Z.; Jorgensen, G.; Vejre, H. How Can Urban Blue-Green Space Be Planned for Climate Adaption in High-Latitude Cities? A Seasonal Perspective. Sustain. Cities Soc. 2020, 53, 101932. [Google Scholar] [CrossRef]
- Bretzel, F.; Vannucchi, F.; Romano, D.; Malorgio, F.; Benvenuti, S.; Pezzarossa, B. Wildflowers: From Conserving Biodiversity to Urban Greening A Review. Urban For. Urban Green. 2016, 20, 428–436. [Google Scholar] [CrossRef]
- Jingu, S. Temporal Continuities of Grasslands and Forests as Patches of Natural Land in Urban Landscapes: A Case Study of the Tsukuba Science City. Land 2020, 9, 425. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, T.; Wang, Y. Urban Expansion Simulation and Development-Oriented Zoning of Rapidly Urbanising Areas: A Case Study of Hangzhou. Sci. Total Environ. 2022, 807, 150813. [Google Scholar] [CrossRef] [PubMed]
- Aburas, M.M.; Ho, Y.M.; Ramli, M.F.; Ash’aari, Z.H. The Simulation and Prediction of Spatio-Temporal Urban Growth Trends Using Cellular Automata Models: A Review. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 380–389. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Y.; Glendinning, A.; Xu, Y. Land-Use Changes and Land Policies Evolution in China’s Urbanization Processes. Land Use Policy 2018, 75, 375–387. [Google Scholar] [CrossRef]
- Li, Z.; Lin, X.; Coles, A.E.; Chen, X. Catchment-Scale Surface Water-Groundwater Connectivity on China’s Loess Plateau. CATENA 2017, 152, 268–276. [Google Scholar] [CrossRef]
Sensitivity Ranking | Parameters | t-Stat | p-Value | Reasonable Range of Values | Optimal Value | |
---|---|---|---|---|---|---|
Min. | Max. | |||||
1 | R__CN2.mgt | −57.72 | 0 | −0.5 | 0.5 | −0.431 |
2 | V__GW_DELAY.gw | 18 | 0 | 30 | 450 | 374.82 |
3 | R__SOL_BD.sol | −10.8 | 0 | −0.5 | 0.5 | −0.059 |
4 | R__HRU_SLP.hru | −8.9 | 0 | −0.5 | 0.5 | −0.401 |
5 | R__SOL_K.sol | −8.3 | 0 | −0.5 | 0.5 | −0.319 |
6 | V__ALPHA_BNK.rte | −7.8 | 0 | 0 | 1 | 0.166667 |
7 | R__SLSUBBSN.hru | 5.3 | 0 | −0.5 | 0.5 | 0.001 |
8 | V__CH_N2.rte | 3.1 | 0.01 | 0 | 0.3 | 0.0861 |
9 | V__GWQMN.gw | 2.8 | 0.02 | 0 | 1000 | 721 |
10 | V__GW_REVAP.gw | 2.5 | 0.05 | 0 | 1 | 0.553 |
11 | V__CH_K2.rte | 2.3 | 0.07 | 0 | 50 | 8.650001 |
12 | V__ESCO.hru | −2.1 | 0.09 | 0.1 | 1 | 0.2917 |
13 | R__SOL_AWC.sol | −1.8 | 0.11 | −0.5 | 0.5 | −0.215 |
14 | V__ALPHA_BF.gw | −1.5 | 0.19 | 0 | 1 | 0.003 |
15 | R__OV_N.hru | 0.9 | 0.53 | −0.5 | 0.5 | −0.061 |
16 | V__EPCO.hru | 0.5 | 0.72 | 0 | 1 | 0.053 |
17 | V__REVAPMN.gw | 0.1 | 0.97 | 0 | 500 | 33.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Z.; Zhang, S.; Zhang, W.; Zhao, X.; Gao, J. Multi-Scale Effect of Land Use Landscape on Basin Streamflow Impacts in Loess Hilly and Gully Region of Loess Plateau: Insights from the Sanchuan River Basin, China. Sustainability 2024, 16, 10781. https://doi.org/10.3390/su162310781
Lei Z, Zhang S, Zhang W, Zhao X, Gao J. Multi-Scale Effect of Land Use Landscape on Basin Streamflow Impacts in Loess Hilly and Gully Region of Loess Plateau: Insights from the Sanchuan River Basin, China. Sustainability. 2024; 16(23):10781. https://doi.org/10.3390/su162310781
Chicago/Turabian StyleLei, Zexin, Shifang Zhang, Wenzheng Zhang, Xuqiang Zhao, and Jing Gao. 2024. "Multi-Scale Effect of Land Use Landscape on Basin Streamflow Impacts in Loess Hilly and Gully Region of Loess Plateau: Insights from the Sanchuan River Basin, China" Sustainability 16, no. 23: 10781. https://doi.org/10.3390/su162310781
APA StyleLei, Z., Zhang, S., Zhang, W., Zhao, X., & Gao, J. (2024). Multi-Scale Effect of Land Use Landscape on Basin Streamflow Impacts in Loess Hilly and Gully Region of Loess Plateau: Insights from the Sanchuan River Basin, China. Sustainability, 16(23), 10781. https://doi.org/10.3390/su162310781