Preparation of Composite Materials with Slow-Release Biocides and Solidifying Agents for Remediation of Acid Pollution in Coal Gangue
<p>Curing rate of biochar solidified sulfate-reducing bacteria.</p> "> Figure 2
<p>Water-retention agents’ liquid holding capacity and release rate for different biocides.</p> "> Figure 3
<p>The variation curves of pH for gangue leaching solutions.</p> "> Figure 4
<p>The variation curve of sulfate content in gangue leaching solutions.</p> "> Figure 5
<p>The variation curves of EC for gangue leaching solutions.</p> "> Figure 6
<p>The variation curves of Pb<sup>2+</sup> and Cd<sup>2</sup><sup>+</sup> for gangue leaching solutions.</p> "> Figure 7
<p>Relative abundance of bacteria at the phylum level in coal gangue.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Biochar
2.2. Selection of Water-Retention Agents
2.3. Selection and Use of Experimental Materials
3. Results
3.1. Characterization Analysis of Biochar
3.1.1. Yield and Ash Content of Biochar
3.1.2. pH of Biochar
3.1.3. Specific Surface Area and Pore Characteristics of Biochar
3.1.4. Immobilization Rate of Sulfate-Reducing Bacteria Using Biochar
3.1.5. Biochar Addition Amount
3.2. Performance Analysis of Slow-Release Biocides
3.2.1. Liquid Absorption Capacity and Rate of the Superabsorbent Biocide
3.2.2. Liquid Retention Capacity and Release Rate of the Superabsorbent Biocide
Repeated Absorption Performance of Superabsorbent Biocides
3.3. Acidification Inhibition Performance of Composite Materials
3.3.1. Preparation Methods for Composite Materials
3.3.2. pH Changes in Coal Gangue Leachate
3.3.3. Changes in SO42− Ion Concentration of Coal Gangue Leachate
3.3.4. Changes in Electrical Conductivity of Coal Gangue Leachate
3.3.5. Heavy Metal Removal Effectiveness
3.3.6. Changes in Microbial Structure
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Bureau of Statistics. Statistical Bulletin of National Economic and Social Development of the People′s Republic of China 2022; China Information News; Statistics of China: Beijing, China, 2023; pp. 12–29. [Google Scholar]
- Yu, L.J.; Feng, Y.L.; Yan, W. The Current Situation of Comprehensive Utilization of Coal Gangue in China. Adv. Mater. Res. 2012, 524–527, 915–918. [Google Scholar] [CrossRef]
- Ouyang, S.; Huang, Y.; Gao, H.; Guo, Y.; Wu, L.; Li, J. Study on the distribution characteristics and ecological risk of heavy metal elements in coal gangue taken from 25 mining areas of China. Environ. Sci. Pollut. Res. 2022, 29, 48285–48300. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; He, N.; Li, D. The relationship between oxygen consumption rate and temperature during coal spontaneous combustion. Saf. Sci. 2012, 50, 842–845. [Google Scholar] [CrossRef]
- Saini, V.; Gupta, R.P.; Arora, M.K. Environmental impact studies in coalfields in India: A case study from Jharia coal-field. Renew. Sustain. Energy Rev. 2016, 53, 1222–1239. [Google Scholar] [CrossRef]
- Fan, C.; Guo, C.; Chen, W.; Lu, G.; Shen, Y.; Dang, Z. Fe(Ⅱ)-mediated transformation of schwertmannite associated with calcium from acid mine drainage treatment. J. Environ. Sci. 2023, 126, 612–620. [Google Scholar] [CrossRef]
- Guan, Y.; Chu, C.; Shao, C.; Ju, M.; Dai, E. Study of integrated risk regionalisation method for soil contamination in industrial and mining area. Ecol. Indic. 2017, 83, 260–270. [Google Scholar] [CrossRef]
- Wang, X.W.; Zhong, N.N.; Hu, D.M.; Liu, Z.Z.; Zhang, Z.H. Polycyclic aromatic hydrocarbon (PAHs) pollutants in groundwater from coal gangue stack area: Characteristics and origin. Water Sci. Technol. 2009, 59, 1043–1051. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, Z.; Pan, H.; Sun, B.; Zeng, D.; He, L.; Zhou, G. Cadmium contamination in soils and crops in four mining areas, China. J. Geochem. Explor. 2018, 192, 72–84. [Google Scholar] [CrossRef]
- Tang, W. Laboratorial Investigation and Simulation Test for Spontaneous Combustion Characteristics of the Coal Waste under Lean-Oxygen Atmosphere. Combust. Sci. Technol. 2020, 192, 46–61. [Google Scholar] [CrossRef]
- Li, S.; Bai, G.; Tian, Y. Study on Environmental Effect of Foundation Backfilled with Coal Gangue. J. Earth Sci. Environ. 2011, 6, 1–5. [Google Scholar]
- Binbin, H.; Chunhong, W. Study on the Effect of Improving the Eco-Environment of Coal Gangue Dump through Afforestation; IEEE: Piscataway, NJ, USA, 2010. [Google Scholar]
- Papirio, S.; Villa-Gomez, D.K.; Esposito, G.; Pirozzi, F.; Lens, P.N.L. Acid Mine Drainage Treatment in Fluidized-Bed Bioreactors by Sulfate-Reducing Bacteria: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2013, 43, 2545–2580. [Google Scholar] [CrossRef]
- Sheoran, A.S.; Sheoran, V.; Choudhary, R.P. Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: A review. Miner. Eng. 2010, 23, 1073–1100. [Google Scholar] [CrossRef]
- Hulshof, A.H.; Blowes, D.W.; Ptacek, C.J.; Gould, W.D. Microbial and nutrient investigations into the use of in situ layers for treatment of tailings effluent. Environ. Sci. Technol. 2003, 37, 5027–5033. [Google Scholar] [CrossRef] [PubMed]
- Ocando, L.; Urribarrí, A.; Urdaneta, E.; de Romero, M.F.; González, D.; Fuenmayor, H. Evaluation of Sulfate-Reducing Bacteria Biofilms in the Presence of Biocides. In Proceedings of the CORROSION 2013, Orlando, FL, USA, 17–21 March 2013. [Google Scholar]
- Ayangbenro, A.S.; Olanrewaju, O.S.; Babalola, O.O. Sulfate-Reducing Bacteria as an Effective Tool for Sustainable Acid Mine Bioremediation. Front. Microbiol. 2018, 22, 1986. [Google Scholar] [CrossRef]
- Jones, I.A.; Joshi, L.T. Biocide Use in the Antimicrobial Era: A Review. Molecules 2021, 26, 2276. [Google Scholar] [CrossRef]
- Zhu, Q.; Hu, Z.; Ruan, M. Characteristics of sulfate-reducing bacteria and organic bactericides and their potential to mitigate pollution caused by coal gangue acidification. Environ. Technol. Innov. 2020, 20, 101142. [Google Scholar] [CrossRef]
- Chen, L.; Qin, J.; Zhao, Q.; Ye, Z. Treatment of dairy wastewater by immobilized microbial technology using polyurethane foam as carrier. Bioresour. Technol. 2022, 347, 126430. [Google Scholar] [CrossRef]
- Yunkai, L.; Tingwu, X.; Zhiyun, O.; Xiongcai, L.; Honglu, L.; Zhongyong, H.; Peiling, Y. Micromorphology of macromolecular superabsorbent polymer and its fractal characteristics. J. Appl. Polym. Sci. 2009, 113, 3510–3519. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
- Jaafar, N.M.; Clode, P.L.; Abbott, L.K. Soil Microbial Responses to Biochars Varying in Particle Size, Surface and Pore Properties. Pedosphere 2015, 11, 770–780. [Google Scholar] [CrossRef]
- Ng, Y.L.; Yan, R.; Chen, X.G.; Geng, A.L.; Gould, W.D.; Liang, D.T.; Koe, L.C.C. Use of activated carbon as a support medium for H2S biofiltration and effect of bacterial immobilization on available pore surface. Appl. Microbiol. Biotechnol. 2004, 66, 259–265. [Google Scholar] [CrossRef]
- Song, J. Proposed Countermeasures on How to Push Forward the Utilization of Gangue as a Kind of Resource. Coal Geol. China 2006, 18, 9–12. [Google Scholar]
Element | Mn | Co | Ni | C | O | F | Mg | Al | Si | K | Ca | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
wt.% | 0.07 | 0.04 | 0.04 | 7.17 | 55.88 | 0 | 0.27 | 15.68 | 18.34 | 1.49 | 0.35 | 0.66 |
JG300 | JG500 | JG700 | |
---|---|---|---|
Ash content (%) | 7.84 | 8.96 | 9.77 |
Yield (%) | 42.53 | 31.82 | 22.49 |
JG300 | JG500 | JG700 | |
---|---|---|---|
pH | 7.38 | 8.95 | 9.24 |
Specific Surface Area (m2·g−1) | Total Volume (cm3·g−1) | Average Pore Size (nm) | |
---|---|---|---|
JG300 | 5.74 | 0.016 | 10.93 |
JG500 | 53.98 | 0.058 | 5.71 |
JG700 | 163.31 | 0.144 | 3.77 |
Additive Amount | 0 g | 0.2 g | 0.4 g | 0.6 g | 0.8 g | 1 g |
---|---|---|---|---|---|---|
Number of SRB (cfu/mL−1) | 6.71 × 104 | 2.94 × 107 | 4.89 × 1010 | 4.17 × 1012 | 1.99 × 1011 | 6.73 × 109 |
Polyacrylamide | Starch-Grafted Acrylate | |
---|---|---|
Absorption ratio of deionized water (g/g) | 336.72 | 584.81 |
Absorbent ratio of fungicide (g/g) | 356.24 | 301.63 |
Suction Times | Polyacrylamide Absorption Ratio (g/g) | Starch-Grafted Acrylate Absorption Ratio (g/g) |
---|---|---|
1 | 356.24 | 301.63 |
2 | 325.38 | 304.82 |
3 | 305.22 | 284.41 |
4 | 275.03 | 250.89 |
5 | 259.30 | 237.49 |
6 | 249.53 | 210.42 |
Number | Group | Add |
---|---|---|
1 | CK | No additions |
2 | PSM | 5 mL of SRB is mixed with 100 mL of a 50 mg·L−1 SDS solution. |
3 | SSM | A composite material composed of 0.1 g of a solidifying agent and 1 g of a slow-release bactericide |
Sample | Shannon | Chao1 | Ace | Simpson |
---|---|---|---|---|
PSM | 2.620809 | 261.7727 | 260.1344 | 0.128018 |
SSM | 1.85 | 222.14 | 227.79 | 0.25 |
CK | 3.370471 | 466.5624 | 466.4569 | 0.091766 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, M.; Hu, Z.; Fang, H.; Li, Y.; Shi, Z. Preparation of Composite Materials with Slow-Release Biocides and Solidifying Agents for Remediation of Acid Pollution in Coal Gangue. Sustainability 2024, 16, 10598. https://doi.org/10.3390/su162310598
Ruan M, Hu Z, Fang H, Li Y, Shi Z. Preparation of Composite Materials with Slow-Release Biocides and Solidifying Agents for Remediation of Acid Pollution in Coal Gangue. Sustainability. 2024; 16(23):10598. https://doi.org/10.3390/su162310598
Chicago/Turabian StyleRuan, Mengying, Zhenqi Hu, Huiming Fang, Yuan Li, and Zhewei Shi. 2024. "Preparation of Composite Materials with Slow-Release Biocides and Solidifying Agents for Remediation of Acid Pollution in Coal Gangue" Sustainability 16, no. 23: 10598. https://doi.org/10.3390/su162310598
APA StyleRuan, M., Hu, Z., Fang, H., Li, Y., & Shi, Z. (2024). Preparation of Composite Materials with Slow-Release Biocides and Solidifying Agents for Remediation of Acid Pollution in Coal Gangue. Sustainability, 16(23), 10598. https://doi.org/10.3390/su162310598