Macroscopic State-Level Analysis of Pavement Roughness Using Time–Space Econometric Modeling Methods
<p>Methodological Framework Adopted to Conduct Spatial Regression Analysis of State-level Pavement Roughness Indicators.</p> "> Figure 2
<p>U.S. Climatic Weather Zones (Adapted from Smith et al., 1993) [<a href="#B50-sustainability-16-09071" class="html-bibr">50</a>].</p> "> Figure 3
<p>State-Level Surface Geology Distribution (Bletcher, 1943) [<a href="#B51-sustainability-16-09071" class="html-bibr">51</a>].</p> "> Figure 4
<p>Predominant Soil Type Frequency Histogram.</p> "> Figure 5
<p>Climate Type Frequency Histogram.</p> "> Figure 6
<p>Moran’s <span class="html-italic">I</span> Scatterplot for (<b>a</b>) Rural Collector Roads, (<b>b</b>) Rural Interstate Roads, (<b>c</b>) Rural Minor Arterial Roads, (<b>d</b>) Rural Principal Arterial Roads, (<b>e</b>) Urban Collector Roads, (<b>f</b>) Urban Interstate Roads, (<b>g</b>) Urban Minor Arterial Roads, (<b>h</b>) Urban Other Expressway Roads, (<b>i</b>) Urban Principal Arterial Roads.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Methodological Approach
3.1. Methodological Framework to Determine Pavement Deterioration
3.2. Spatial Trends: Autocorrelation and Heterogeneity
3.3. Spatial Weights
3.4. Exploratory Spatial Data Analysis
3.5. Spatial Regression Modeling
3.6. Time-Lagged Instrumental Variable
4. Data
4.1. Dependent Variable
4.2. Independent Variables
4.3. Summary Statistics
5. Results and Discussion
5.1. Exploratory Spatial Data Analysis (ESDA) Results
5.2. Spatial Regression Modeling
6. Summary and Conclusions
- Identifying the presence of spatial autocorrelation of a pavement condition and accounting for it at network-level pavement deterioration modeling by using spatial regression modeling;
- Developing a pavement deterioration modeling framework (with the steps explained in the methodology section) that could be used by policy makers and related agencies;
- Conducting a national-level experiment using U.S. state-level pavement data and discussing insights revealed by the model estimation results.
- The results of the national level experiment using U.S. state-level pavement data were in line with past studies that identified similar influential factors (e.g., weather, soil, previous conditions) affecting pavement performance;
- Moreover, the spatial test results showed that the pavement condition in one state could possibly be correlated with the pavement condition in neighboring states, due to either the spatial correlation of factors affecting the pavement condition in neighboring states (it should be noted that this possibility was explored, but the results were statistically insignificant) or unobserved characteristics commonly shared among the neighboring states;
- Factors affecting pavement performance in a state, such as the traffic volume, climate, subgrade soil type, and most importantly, pavement maintenance funding of a state, possibly play a role in the pavement performance of a “neighboring” state.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Department of Transportation (DOT). Fiscal Year 2018 Budget Highlights. Available online: https://www.transportation.gov/sites/dot.gov/files/docs/mission/budget/281076/fiscal-year-2018-budget-highlights-book_0.pdf (accessed on 1 September 2022).
- American Society of Civil Engineers (ASCE). Infrastructure Report Card. Available online: https://infrastructurereportcard.org/ (accessed on 30 July 2019).
- Federal Highway Administration (FHWA). Highway Statistics. Available online: http://www.fhwa.dot.gov/policy/ohim/hs06/ (accessed on 30 July 2019).
- Anselin, L. Spatial Econometrics: Methods and Models; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 4. [Google Scholar]
- Anastasopoulos, P.C.; Labi, S.; Karlaftis, M.G.; Mannering, F.L. Exploratory State-Level Empirical Assessment of Pavement Performance. J. Infrastruct. Syst. 2011, 17, 200–215. [Google Scholar] [CrossRef]
- Lytton, R.L. Concepts of pavement performance prediction and modelling. In Proceedings of the 2nd North American Conference on Managing Pavements, Toronto, ON, Canada, 2–6 November 1987. [Google Scholar]
- Haas, R.; Hudson, W.R. Pavement Asset Management; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Haas, R. Good technical foundations are essential for successful pavement management. In Proceedings of the Maintenance and Rehabilitation of Pavements and Technological Control, Cuimaraes, Portugal, 7–10 July 2003. [Google Scholar]
- Pereira, D.; Costa, T. Mechanistic-Empirical Evaluation of Flexible Pavements in Brazilian Highway; Department of Civil Engineering, University Center of the Distrito Federal: São Paulo, Brazil, 2007. [Google Scholar]
- Applied Research Associates, Inc. Guide for Mechanistic-Empirical Design for New and Rehabilitated Pavement Structures; National Cooperative Highway Research Program (NHCRP) 1-37A Final Report; Strategic Highway Research Program, National Research Council: Washington, DC, USA, 2004. [Google Scholar]
- American Association of State Highway Officials (AASHO). The AASHO Road Test: Report 5, Pavement Research. Special Report 61E; Highway Research Board, National Academy of Sciences: Washington, DC, USA, 1962. [Google Scholar]
- Watanatada, T.; Harral, C.G.; Patterson, W.D.O.; Dreshwar, A.M.; Bhandari, A.; Tsunokawa, K. The Highway Design and Maintenance Standards Model; Johns Hopkins University Press: Baltimore, MD, USA, 1987; Volume 2. [Google Scholar]
- Madanat, S.; Bulusu, S.; Mahmoud, A. Estimation of Infrastructure Distress Initiation and Progression Models. J. Infrastruct. Syst. 1995, 1, 146–150. [Google Scholar] [CrossRef]
- Madanat, S.; Mishalani, R. Selectivity Bias in Modeling Highway Pavement Maintenance Effectiveness. J. Infrastruct. Syst. 1998, 4, 134–137. [Google Scholar] [CrossRef]
- Archilla Adrián, R.; Madanat, S. Development of a Pavement Rutting Model from Experimental Data. J. Transp. Eng. 2000, 126, 291–299. [Google Scholar] [CrossRef]
- Gharaibeh, N.G.; Darter, M.I. Probabilistic Analysis of Highway Pavement Life for Illinois. Transp. Res. Rec. 2003, 1823, 111–120. [Google Scholar] [CrossRef]
- Prozzi Jorge, A.; Madanat Samer, M. Incremental Nonlinear Model for Predicting Pavement Serviceability. J. Transp. Eng. 2003, 129, 635–641. [Google Scholar] [CrossRef]
- Prozzi, J.A.; Madanat, S.M. Development of Pavement Performance Models by Combining Experimental and Field Data. J. Infrastruct. Syst. 2004, 10, 9–22. [Google Scholar] [CrossRef]
- Yu, J.; Chou, E.Y.; Luo, Z. Development of Linear Mixed Effects Models for Predicting Individual Pavement Conditions. J. Transp. Eng. 2007, 133, 347–354. [Google Scholar] [CrossRef]
- Yu, J.; Chou, E.Y.; Yau, J.-T. Estimation of the Effects of Influential Factors on Pavement Service Life with Cox Proportional Hazards Method. J. Infrastruct. Syst. 2008, 14, 275–282. [Google Scholar] [CrossRef]
- Madanat, S.; Nakat, Z.; Jin, E.-J. Empirical Modeling of Pavement Overlay Crack Progression with Field Data. J. Infrastruct. Syst. 2010, 16, 292–298. [Google Scholar] [CrossRef]
- Aguiar-Moya, J.P.; Prozzi, J.A.; de Fortier Smit, A. Mechanistic-Empirical IRI Model Accounting for Potential Bias. J. Transp. Eng. 2011, 137, 297–304. [Google Scholar] [CrossRef]
- David, D.; Ahmed, S.S.; Sarwar, M.T.; Fountas, G.; Anastasopoulos, P. An In-Depth Econometric Analysis of Pavement Performance and Service Life by Pavement Rehabilitation Treatment Type and Delivery Method. J. Infrastruct. Syst. 2023, 29, 04023024. [Google Scholar] [CrossRef]
- Owusu-Ababio, S. Effect of Neural Network Topology on Flexible Pavement Cracking Prediction. Comput.-Aided Civ. Infrastruct. Eng. 1998, 13, 349–355. [Google Scholar] [CrossRef]
- La Torre, F.; Domenichini, L.; Darter, M.I. Roughness prediction based on the artificial neural network approach. In Proceedings of the 4th International Conference on Managing Pavements, Durban, South Africa, 17–21 May 1998; pp. 599–612. [Google Scholar]
- Farias, M.M.; Neto, S.A.D.; Souza, R.O. Prediction of longitudinal roughness using neural network. In Proceedings of the Maintenance and Rehabilitation of Pavements and Technological Control, Cuimaraes, Portugal, 7–10 July 2003. [Google Scholar]
- Raja Shekharan, A. Effect of Noisy Data on Pavement Performance Prediction by Artificial Neural Networks. Transp. Res. Rec. 1998, 1643, 7–13. [Google Scholar] [CrossRef]
- Flintsch Gerardo, W.; Chen, C. Soft Computing Applications in Infrastructure Management. J. Infrastruct. Syst. 2004, 10, 157–166. [Google Scholar] [CrossRef]
- Butt, A.A.; Shahin, M.Y.; Feighan, K.J.; Carpenter, S.H. Pavement performance prediction model using the Markov process. Transp. Res. Rec. J. Transp. Res. Board 1987, 1123, 12–19. [Google Scholar]
- Li, N.; Xie, W.-C.; Haas, R. Reliability-Based Processing of Markov Chains for Modeling Pavement Network Deterioration. Transp. Res. Rec. 1996, 1524, 203–213. [Google Scholar] [CrossRef]
- Yang, J.; Gunaratne, M.; Lu, J.J.; Dietrich, B. Use of Recurrent Markov Chains for Modeling the Crack Performance of Flexible Pavements. J. Transp. Eng. 2005, 131, 861–872. [Google Scholar] [CrossRef]
- Smith, W.; Finn, F.; Kulkarni, R.; Saraf, C.; Nair, K. Bayesian Methodology for Verifying Recommendations to Minimize Asphalt Pavement Distress; NCHRP Report; Transportation Research Board, The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 1979. [Google Scholar]
- Hong, F.; Prozzi, J.A. Estimation of Pavement Performance Deterioration Using Bayesian Approach. J. Infrastruct. Syst. 2006, 12, 77–86. [Google Scholar] [CrossRef]
- Anselin, L. Spatial econometrics In Handbook of Spatial Analysis in the Social Sciences; Edward Elgar Publishing: Cheltenham, UK, 2006; pp. 101–122. [Google Scholar]
- Anselin, L.; Rey, S.J. Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL; GeoDa Press LLC: Chicago, IL, USA, 2014. [Google Scholar]
- Anastasopoulos, P.C.; Florax, R.J.G.M.; Labi, S.; Karlaftis, M.G. Contracting in highway maintenance and rehabilitation: Are spatial effects important? Transp. Res. Part A 2010, 44, 136–146. [Google Scholar] [CrossRef]
- Anselin, L. Interactive techniques and exploratory spatial data analysis. In Geographical Information Systems: Principles, Techniques, Management and Applications; Wiley: Hoboken, NJ, USA, 1999; pp. 251–264. [Google Scholar]
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Florax, R.J.G.M.; Nijkamp, P. Misspecification in Linear Spatial Regression Models. 3 October 2003. Tinbergen Institute Discussion Papers No. 2003-081/3. Available online: https://ssrn.com/abstract=459500 (accessed on 30 July 2019).
- Anselin, L.; Bera, A.K.; Florax, R.; Yoon, M.J. Simple diagnostic tests for spatial dependence. Reg. Sci. Urban Econ. 1996, 26, 77–104. [Google Scholar] [CrossRef]
- Anselin, L.; Kelejian, H.H. Testing for Spatial Error Autocorrelation in the Presence of Endogenous Regressors. Int. Reg. Sci. Rev. 1997, 20, 153–182. [Google Scholar] [CrossRef]
- Jarque, C.M.; Bera, A.K. Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Econ. Lett. 1980, 6, 255–259. [Google Scholar] [CrossRef]
- Breusch, T.S.; Pagan, A.R. A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica 1979, 47, 1287–1294. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G. Robust Tests for Heteroscedasticity Based on Regression Quantiles. Econometrica 1982, 50, 43–61. [Google Scholar] [CrossRef]
- Abrevaya, J.; Hausman, J.A.; Khan, S. Testing for Causal Effects in a Generalized Regression Model with Endogenous Regressors. Econometrica 2010, 78, 2043–2061. [Google Scholar] [CrossRef]
- Buddhavarapu, P.; Banerjee, A.; Prozzi, J.A. Influence of pavement condition on horizontal curve safety. Accid. Anal. Prev. 2013, 52, 9–18. [Google Scholar] [CrossRef]
- Federal Highway Administration (FHWA). Long Term Pavement Performance Program, InfoPave Database. Available online: https://infopave.fhwa.dot.gov/Data/DataSelection (accessed on 30 July 2019).
- Louisiana Department of Transportation and Development. Louisiana Standard Specifications for Roads and Bridges; Department of Transportation and Development: Baton Rouge, LA, USA, 2016. [Google Scholar]
- David, D. Effectiveness of Various Public Private Partnership Pavement Rehabilitation Treatments: A Big Data Informatics Survival Analysis of Pavement Service Life; State University of New York at Buffalo: Buffalo, NY, USA, 2017. [Google Scholar]
- Smith, R.; Freeman, T.; Pendleton, O. Pavement Maintenance Effectiveness; Strategic Highway Research Program, National Research Council: Washington, DC, USA, 1993. [Google Scholar]
- Belcher, D.J.; Gregg, L.E.; Woods, K.B. The Formation, Distribution, and Engineering Characteristics of Soils. Soil Sci. 1943, 56, 242. [Google Scholar] [CrossRef]
- Federal Highway Administration (FHWA). 2010 Status of the Nation’s Highways, Bridges, and Transit: Conditions & Performance; CreateSpace Independent Publishing Platform: North Charleston, SC, USA, 2010. [Google Scholar]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
Roadway | Variable | Mean | SD | Min | Max |
---|---|---|---|---|---|
Rural Collector | State IRI in time period t | 119.766 | 21.686 | 49.665 | 153.801 |
State IRI in time period t−1 | 119.186 | 23.960 | 49.665 | 166.552 | |
Capital Outlay in time period t | 63.736 | 79.468 | 4.351 | 489.524 | |
Capital Outlay in time period t−1 | 61.559 | 73.511 | 6.186 | 447.817 | |
Preservation Expenditure in time period t | 49.617 | 56.121 | 5.835 | 329.014 | |
Preservation Expenditure in time period t−1 | 41.707 | 46.755 | 4.037 | 303.073 | |
Soil Type Indicator: 1 if Dominant Soil Type was Residual or Clay Organic, 0 otherwise | 0.369 | 0.488 | 0 | 1 | |
Expenditure Indicator: 1 if Preservation Expenditure in time period t−1 was less than the mean value per state (USD 41.707M), 0 otherwise | 0.673 | 0.474 | 0 | 1 | |
Rural Interstate | State IRI in time period t | 84.018 | 13.393 | 55.022 | 114.250 |
State IRI in time period t−1 | 86.008 | 16.191 | 55.725 | 117.924 | |
Capital Outlay in time period t | 87.049 | 92.233 | 8.480 | 528.809 | |
Capital Outlay in time period t−1 | 99.345 | 96.566 | 18.717 | 428.623 | |
Preservation Expenditure in time period t | 60.096 | 50.221 | 8.535 | 210.321 | |
Preservation Expenditure in time period t−1 | 73.158 | 67.775 | 8.223 | 296.378 | |
Weather Type Indicator: 1 if Weather Type was Wet–Freeze or Dry–Freeze, 0 otherwise | 0.695 | 0.465 | 0 | 1 | |
Expenditure Indicator: 1 if Average Preservation Expenditure in time period t−1 was less than the mean value per state (USD 73.158M), 0 otherwise | 0.630 | 0.488 | 0 | 1 | |
Rural Minor Arterial | State IRI in time period t | 105.625 | 15.074 | 65.442 | 130.165 |
State IRI in time period t−1 | 106.571 | 16.817 | 65.592 | 140.982 | |
Capital Outlay in time period t | 85.923 | 83.451 | 8.407 | 411.269 | |
Capital Outlay in time period t−1 | 81.895 | 69.606 | 9.774 | 371.144 | |
Preservation Expenditure in time period t | 62.286 | 46.348 | 7.027 | 232.274 | |
Preservation Expenditure in time period t−1 | 53.991 | 42.352 | 5.893 | 228.707 | |
Expenditure Indicator: 1 if Average Preservation Expenditure in time period t was less than the mean value per state (USD 62.286M), 0 otherwise | 0.608 | 0.493 | 0 | 1 | |
Rural Principal Arterial | State IRI in time period t | 96.156 | 13.770 | 56.647 | 124.620 |
State IRI in time period t−1 | 97.762 | 16.465 | 57.034 | 133.000 | |
Capital Outlay in time period t | 180.647 | 149.499 | 22.300 | 673.110 | |
Capital Outlay in time period t−1 | 173.631 | 120.192 | 11.556 | 560.289 | |
Preservation Expenditure in time period t | 68.508 | 56.355 | 7.020 | 252.285 | |
Preservation Expenditure in time period t−1 | 57.016 | 45.676 | 6.225 | 223.305 | |
Weather Type Indicator: 1 if Weather Type was Wet–Freeze or Dry–Freeze, 0 otherwise | 0.695 | 0.465 | 0 | 1 | |
Urban Collector | State IRI in time period t | 150.968 | 31.165 | 49.780 | 194.485 |
State IRI in time period t−1 | 148.060 | 31.724 | 50.346 | 194.485 | |
Capital Outlay in time period t | 16.742 | 26.878 | 0.069 | 158.878 | |
Capital Outlay in time period t−1 | 13.223 | 18.706 | 0.237 | 106.596 | |
Preservation Expenditure in time period t | 13.832 | 11.657 | 0.808 | 59.027 | |
Preservation Expenditure in time period t−1 | 21.285 | 23.241 | 0.144 | 96.480 | |
Urban Interstate | State IRI in time period t | 97.728 | 13.822 | 61.939 | 128.400 |
State IRI in time period t−1 | 101.338 | 17.453 | 62.331 | 137.411 | |
Capital Outlay in time period t | 225.237 | 300.356 | 0.881 | 1294.367 | |
Capital Outlay in time period t−1 | 208.293 | 253.996 | 0.409 | 1139.460 | |
Preservation Expenditure in time period t | 61.428 | 88.430 | 0.351 | 491.137 | |
Preservation Expenditure in time period t−1 | 50.971 | 61.201 | 0.037 | 222.534 | |
Weather Type Indicator: 1 if Weather Type was Wet–Freeze or Dry–Freeze, 0 otherwise | 0.434 | 0.501 | 0 | 1 | |
Urban Minor Arterial | State IRI in time period t | 137.609 | 22.849 | 59.789 | 176.311 |
State IRI in time period t−1 | 134.385 | 25.705 | 61.859 | 180.558 | |
Capital Outlay in time period t | 54.198 | 75.903 | 1.863 | 434.645 | |
Capital Outlay in time period t−1 | 46.377 | 61.103 | 0.337 | 334.722 | |
Preservation Expenditure in time period t | 28.949 | 41.377 | 0.230 | 211.123 | |
Preservation Expenditure in time period t−1 | 20.931 | 28.873 | 0.106 | 168.245 | |
Expenditure Indicator: 1 if Average Preservation Expenditure in time period t−1 was less than the median value per state (USD 8.372M), 0 otherwise | 0.500 | 0.505 | 0 | 1 | |
Urban Other Express way | State IRI in time period t | 107.009 | 16.968 | 69.361 | 139.602 |
State IRI in time period t−1 | 110.255 | 19.359 | 67.635 | 148.944 | |
Capital Outlay in time period t | 101.200 | 199.586 | 0.000 | 1168.276 | |
Capital Outlay in time period t−1 | 86.667 | 177.275 | 0.000 | 959.994 | |
Preservation Expenditure in time period t | 36.839 | 50.500 | 0.450 | 275.150 | |
Preservation Expenditure in time period t−1 | 31.975 | 38.349 | 0.514 | 175.858 | |
Urban Principal Arterial | State IRI in time period t | 130.865 | 19.239 | 74.033 | 163.373 |
State IRI in time period t−1 | 132.347 | 21.994 | 78.639 | 172.428 | |
Capital Outlay in time period t | 134.334 | 214.284 | 0.541 | 1282.708 | |
Capital Outlay in time period t−1 | 125.840 | 187.787 | 1.379 | 979.940 | |
Preservation Expenditure in time period t | 36.124 | 46.956 | 0.889 | 209.800 | |
Preservation Expenditure in time period t−1 | 24.379 | 31.349 | 0.127 | 180.361 | |
Inversed Average Preservation Expenditure in time period t−1 multiplied by 1 million | 64.240 | 129.618 | 1.020 | 724.987 |
Roadway Class | Moran’s I (z-Value) | Scatterplot |
---|---|---|
Rural Collector | 0.094 (1.724) | Figure 6a |
Rural Interstate | 0.211 (2.970) | Figure 6b |
Rural Minor Arterial | 0.104 (1.725) | Figure 6c |
Rural Principal Arterial | 0.064 (1.119) | Figure 6d |
Urban Collector | 0.197 (2.470) | Figure 6e |
Urban Interstate | 0.184 (2.319) | Figure 6f |
Urban Minor Arterial | 0.150 (2.012) | Figure 6g |
Urban Other Expressway | 0.067 (1.022) | Figure 6h |
Urban Principal Arterial | 0.338 (3.936) | Figure 6i |
OLS | Spatial Lag | Spatial Error | Spatial Lag and Error | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | RC | RI | RM | RP | RC | RI | RM | RP | RC | RI | RM | RP | RC | RI | RM | RP |
Constant | 29.202 (2.149) | 21.005 (1.977) | 20.924 (1.639) | 28.883 (1.851) | −34.583 (−1.111) | −10.434 (−0.292) | 34.960 (0.535) | −7.068 (−0.230) | 31.834 (2.465) | 18.704 (1.985) | 20.889 (1.687) | 30.438 (1.985) | −92.802 (−1.265) | −0.137 (−0.006) | 20.575 (0.811) | −7.207 (−0.356) |
Instrumented Time Lag Variable | 0.646 (5.396) | 0.593 (5.315) | 0.756 (6.481) | 0.629 (3.904) | 0.640 (5.678) | 0.590 (5.357) | 0.763 (6.516) | 0.508 (2.826) | 0.625 (5.462) | 0.617 (6.121) | 0.756 (6.690) | 0.612 (3.877) | 0.651 (5.867) | 0.601 (5.674) | 0.748 (6.146) | 0.485 (2.557) |
Weather Type Indicator | ||||||||||||||||
1 if wet–freeze or dry–freeze, 0 otherwise | – | 6.876 (2.103) | – | 7.409 (1.925) | – | 4.224 (0.976) | – | 4.656 (1.097) | – | 8.149 (3.446) | – | 7.392 (1.922) | – | 6.857 (2.171) | – | 4.539 (1.464) |
Soil Type Indicator | ||||||||||||||||
1 if residual or clay organic, 0 otherwise | 7.727 (1.699) | – | – | – | 7.887 (1.844) | – | – | – | 8.048 (1.825) | – | – | – | 9.179 (2.115) | – | – | – |
Expenditure Indicator | ||||||||||||||||
1 if mean preservation expenditure for RM in time period t was less than USD 62.286M, 0 otherwise | – | – | 5.905 (1.797) | – | – | – | 6.141 (1.838) | – | – | – | 5.941 (1.864) | – | – | – | 5.525 (1.694) | – |
1 if mean preservation expenditure for RC in time period t−1 was less than USD 41.706M, 0 otherwise | 14.716 (3.115) | – | – | – | 13.240 (2.948) | – | – | – | 14.343 (3.035) | – | – | – | 13.124 (3.199) | – | – | – |
1 if mean preservation expenditure for RI in time period t−1 was less than USD 73.158M, 0 otherwise | – | 6.045 (1.947) | – | – | – | 5.669 (1.834) | – | – | – | 4.875 (1.847) | – | – | – | 3.164 (1.187) | – | – |
Spatial Lag Parameter (ρ) | – | – | – | – | 0.547 (2.246) | 0.400 (0.920) | −0.141 (−0.219) | 0.512 (1.343) | – | – | – | – | 1.018 (1.627) | 0.266 (0.785) | 0.013 (0.048) | 0.540 (1.686) |
Spatial Error Parameter (λ) | – | – | – | – | – | – | – | – | 0.165 (0.672) | 0.548 (1.758) | 0.019 (0.068) | 0.075 (0.344) | −1.000 (−0.700) | 0.838 (−1.671) | −0.093 (−0.294) | −0.595 (−1.211) |
OLS | Spatial Lag | Spatial Error | Spatial Lag and Error | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | UC | UI | UM | UO | UP | UC | UI | UM | UO | UP | UC | UI | UM | UO | UP | UC | UI | UM | UO | UP |
Constant | 89.613 (3.192) | 18.769 (1.333) | 2.338 (0.174) | 51.001 (2.739) | 38.753 (1.871) | −10.846 (−0.171) | −41.367 (−1.418) | −55.299 (−2.460) | 17.559 (0.234) | −28.304 (−0.938) | 89.669 (3.303) | 15.351 (1.135) | 5.440 (0.417) | 51.906 (2.810) | 58.089 (2.970) | 15.988 (0.397) | −34.939 (−1.926) | −56.026 (−3.062) | 27.099 (0.299) | −30.510 (−1.181) |
Instrumented Time Lag Variable | 0.554 (2.896) | 0.748 (5.503) | 0.961 (10.028) | 0.453 (2.609) | 0.842 (4.441) | 0.624 (3.224) | 0.608 (4.132) | 0.949 (11.286) | 0.416 (2.254) | 0.570 (2.989) | 0.553 (2.986) | 0.783 (5.983) | 0.941 (10.146) | 0.448 (2.630) | 0.667 (3.793) | 0.508 (3.147) | 0.650 (4.273) | 0.942 (10.974) | 0.425 (2.313) | 0.620 (3.180) |
Preservation Expenditure (M) in time period t | −1.140 (3.415) | – | – | – | – | −1.053 (3.132) | – | – | – | – | −1.134 (−3.515) | – | – | – | – | −1.136 (−3.681) | – | – | – | – |
Inversed preservation expenditure in time period t−1 | – | – | – | – | 0.034 (1.743) | – | – | – | – | 0.031 (1.878) | – | – | – | – | 0.032 (1.755) | – | – | – | – | 0.029 (1.832) |
Expenditure Indicator | ||||||||||||||||||||
1 if median preservation expenditure for UM in time period t was less than USD 8.372M, 0 otherwise | – | – | 10.539 (2.766) | – | – | – | – | 10.477 (3.137) | – | – | – | – | 10.176 (2.769) | – | – | – | – | 10.779 (3.275) | – | – |
Weather Type Indicator | ||||||||||||||||||||
1 if wet–freeze, 0 otherwise | – | 5.750 (1.799) | – | – | – | – | 2.880 (0.850) | – | – | – | – | 5.629 (1.901) | – | – | – | – | 2.534 (1.225) | – | – | – |
1 if wet–freeze or dry–freeze, 0 otherwise | – | – | – | 10.847 (2.188) | – | – | – | – | 6.841 (0.688) | – | – | – | – | 10.307 (1.987) | – | – | – | – | 8.911 (0.765) | – |
Spatial Lag Parameter (ρ) | – | – | – | – | – | 0.590 (1.763) | 0.770 (2.347) | 0.435 (3.012) | 0.374 (0.458) | 0.744 (2.759) | – | – | – | – | – | 0.530 (2.026) | 0.665 (2.524) | 0.446 (3.436) | 0.263 (0.275) | 0.717 (2.893) |
Spatial Error Parameter (λ) | – | – | – | – | – | – | – | – | – | – | −0.025 (−0.123) | −0.055 (−0.196) | 0.435 (3.012) | 0.159 (0.668) | 0.485 (2.307) | −0.666 (−2.167) | −0.668 (−1.555) | −0.317 (−0.742) | 0.210 (0.278) | −0.195 (−0.506) |
Test Statistic | RC | RI | RM | RP | UC | UI | UM | UO | UP |
---|---|---|---|---|---|---|---|---|---|
Moran’s I (error) | 1.146 [0.252] | 0.886 [0.376] | 0.532 [0.595] | 0.956 [0.339] | 0.183 [0.855] | 0.141 [0.888] | 1.850 [0.064] | 1.003 [0.316] | 2.184 [0.029] |
2.503 [0.114] | 0.159 [0.690] | 0.000 [0.989] | 0.810 [0.368] | 0.652 [0.419] | 0.938 [0.333] | 9.001 [0.003] | 0.737 [0.391] | 7.291 [0.007] | |
3.752 [0.053] | 2.703 [0.904] | 0.018 [0.893] | 1.428 [0.232] | 3.289 [0.070] | 5.765 [0.016] | 7.096 [0.008] | 1.020 [0.312] | 6.191 [0.013] | |
0.343 [0.558] | 3.650 [0.065] | 0.010 [0.920] | 0.119 [0.730] | 0.002 [0.967] | 0.091 [0.763] | 2.309 [0.129] | 0.280 [0.597] | 2.946 [0.086] | |
1.591 [0.207] | 2.657 [0.103] | 0.028 [0.867] | 0.737 [0.391] | 2.639 [0.104] | 4.918 [0.027] | 0.404 [0.525] | 0.564 [0.453] | 1.847 [0.174] | |
4.095 [0.129] | 2.816 [0.245] | 0.028 [0.986] | 1.547 [0.461] | 3.291 [0.193] | 5.856 [0.054] | 9.405 [0.009] | 1.300 [0.522] | 9.138 [0.010] | |
Multicollinearity Number | 16.812 | 18.347 | 18.302 | 21.156 | 16.467 | 19.951 | 15.939 | 19.951 | 18.410 |
Jarque–Bera (JB) statistic | 2.938 [0.230] | 2.742 [0.254] | 1.281 [0.527] | 1.803 [0.406] | 2.977 [0.226] | 0.571 [0.752] | 0.933 [0.627] | 0.734 [0.693] | 0.949 [0.622] |
Breusch–Pagan (BP) statistic | 4.633 [0.201] | 1.449 [0.694] | 1.343 [0.511] | 2.106 [0.349] | 0.665 [0.717] | 3.344 [0.188] | 0.196 [0.907] | 0.065 [0.968] | 4.234 [0.120] |
Koenker–Bassett (KB) statistic | 3.326 [0.344] | 1.193 [0.756] | 1.113 [0.573] | 1.683 [0.431] | 0.609 [0.737] | 3.833 [0.147] | 0.274 [0.872] | 0.064 [0.968] | 4.453 [0.108] |
Anselin–Kelejian (AK) statistic | 1.311 [0.252] | 2.169 [0.148] | 0.001 [0.977] | 0.001 [0.977] | 3.638 [0.056] | 4.079 [0.043] | 0.670 [0.413] | 0.090 [0.764] | 0.917 [0.338] |
Roadway Classification | Model Type | R2/Spatial Pseudo R2 | Adjusted R2/Spatial Pseudo Adjusted R2 | MAD | MAPE | RMSE |
---|---|---|---|---|---|---|
RC | OLS | 0.604 | 0.576 | 10.218 | 9.845 | 13.642 |
S. Lag | 0.641 | 0.617 | 9.877 | 9.454 | 13.426 | |
S. Error | 0.604 | 0.604 | 10.295 | 9.959 | 13.650 | |
S. Lag and Error | 0.645 | 0.606 | 10.018 | 9.567 | 13.623 | |
RI | OLS | 0.481 | 0.444 | 7.713 | 6.721 | 9.643 |
S. Lag | 0.484 | 0.444 | 8.075 | 6.945 | 9.959 | |
S. Error | 0.480 | – | 7.505 | 6.539 | 9.447 | |
S. Lag and Error | 0.481 | 0.467 | 8.040 | 7.011 | 9.929 | |
RM | OLS | 0.513 | 0.49 | 7.811 | 7.878 | 10.517 |
S. Lag | 0.513 | 0.512 | 7.830 | 7.893 | 10.521 | |
S. Error | 0.513 | – | 7.809 | 7.874 | 10.517 | |
S. Lag and Error | 0.513 | 0.512 | 7.835 | 7.900 | 10.522 | |
RP | OLS | 0.341 | 0.34 | 9.015 | 9.602 | 11.436 |
S. Lag | 0.342 | 0.339 | 9.635 | 10.177 | 11.420 | |
S. Error | 0.341 | – | 9.005 | 9.591 | 11.438 | |
S. Lag and Error | 0.343 | 0.341 | 9.655 | 10.192 | 11.453 | |
UC | OLS | 0.355 | 0.325 | 20.936 | 16.457 | 25.220 |
S. Lag | 0.390 | 0.334 | 20.768 | 16.143 | 25.849 | |
S. Error | 0.355 | – | 20.932 | 16.468 | 25.220 | |
S. Lag and Error | 0.399 | 0.340 | 20.643 | 15.891 | 25.699 | |
UI | OLS | 0.435 | 0.409 | 8.154 | 8.895 | 10.386 |
S. Lag | 0.418 | 0.500 | 8.487 | 9.005 | 10.628 | |
S. Error | 0.435 | – | 8.096 | 8.827 | 10.394 | |
S. Lag and Error | 0.432 | 0.508 | 8.415 | 8.986 | 10.477 | |
UM | OLS | 0.705 | 0.692 | 10.003 | 7.703 | 12.400 |
S. Lag | 0.758 | 0.756 | 9.181 | 7.006 | 11.243 | |
S. Error | 0.705 | – | 10.133 | 7.954 | 12.445 | |
S. Lag and Error | 0.758 | 0.756 | 9.171 | 6.992 | 11.253 | |
UO | OLS | 0.234 | 0.198 | 11.987 | 11.96 | 14.849 |
S. Lag | 0.261 | 0.241 | 11.737 | 11.653 | 14.585 | |
S. Error | 0.234 | – | 11.952 | 11.928 | 14.852 | |
S. Lag and Error | 0.257 | 0.244 | 12.125 | 12.053 | 14.943 | |
UP | OLS | 0.320 | 0.289 | 12.747 | 10.568 | 15.861 |
S. Lag | 0.459 | 0.368 | 10.853 | 8.809 | 14.146 | |
S. Error | 0.318 | – | 12.603 | 10.599 | 16.031 | |
S. Lag and Error | 0.460 | 0.373 | 10.953 | 8.861 | 14.156 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fettahoglu, M.; Ahmed, S.S.; Benedyk, I.; Anastasopoulos, P.C. Macroscopic State-Level Analysis of Pavement Roughness Using Time–Space Econometric Modeling Methods. Sustainability 2024, 16, 9071. https://doi.org/10.3390/su16209071
Fettahoglu M, Ahmed SS, Benedyk I, Anastasopoulos PC. Macroscopic State-Level Analysis of Pavement Roughness Using Time–Space Econometric Modeling Methods. Sustainability. 2024; 16(20):9071. https://doi.org/10.3390/su16209071
Chicago/Turabian StyleFettahoglu, Mehmet, Sheikh Shahriar Ahmed, Irina Benedyk, and Panagiotis Ch. Anastasopoulos. 2024. "Macroscopic State-Level Analysis of Pavement Roughness Using Time–Space Econometric Modeling Methods" Sustainability 16, no. 20: 9071. https://doi.org/10.3390/su16209071
APA StyleFettahoglu, M., Ahmed, S. S., Benedyk, I., & Anastasopoulos, P. C. (2024). Macroscopic State-Level Analysis of Pavement Roughness Using Time–Space Econometric Modeling Methods. Sustainability, 16(20), 9071. https://doi.org/10.3390/su16209071