Residential Load Forecasting Based on Long Short-Term Memory, Considering Temporal Local Attention
<p>Load feature reconstruction.</p> "> Figure 2
<p>LSTM neuron structure.</p> "> Figure 3
<p>LSTM learns time series vectors.</p> "> Figure 4
<p>Convolutional network.</p> "> Figure 5
<p>Temporal Local Attention LSTM structure.</p> "> Figure 6
<p>Prediction results comparison.</p> "> Figure 7
<p>Box plot of <span class="html-italic">MAPE</span> error.</p> "> Figure 8
<p>Box plot of <span class="html-italic">MAE</span> error.</p> "> Figure 9
<p>Prediction results of window size experiment.</p> ">
Abstract
:1. Introduction
- A load time-localized attention mechanism is proposed. CNN is used to extract features from the multi-period load of consecutive days, generating multiple sets of load feature vectors. These vectors are then used in bilinear attention calculations to obtain attention vectors for the current time series.
- A multi-baseline predictive neural network is constructed that integrates load-localized attention. This model decomposes load forecasting into full-text regression baselines, local time period feature baselines, and local date feature baselines. The final prediction output is obtained by aggregating the outputs from these three baselines.
- An empirical study on real-world datasets validates the effectiveness of the model. The model is applied to real user load data from the UMASSHome dataset and compared with the performance of SVR, RNN, and LSTM networks, demonstrating its effectiveness and advantages.
2. Proposed Method for Residential Load Forecasting
2.1. Time-Localized Attention Model
2.1.1. Feature Reconstruction
2.1.2. LSTM-Based Time Series Vector Learning
2.1.3. CNN-Based Time-Localized Convolution
2.1.4. Attention Calculation
2.2. Temporal Local Attention LSTM Load Forecasting Network
3. Case Studies
3.1. Dataset
3.2. Error Evaluation Metrics
3.3. Comparison of Models and Parameter Settings
3.3.1. Loss Function Configuration
3.3.2. Hyperparameter Configuration
3.4. Prediction Performance
3.5. Window Size Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Imani, M.; Ghassemian, H. Residential load forecasting using wavelet and collaborative representation transforms. Appl. Energy 2019, 253, 113505. [Google Scholar] [CrossRef]
- Danish, M.S.S.; Sabory, N.R.; Ahmadi, M.; Senjyu, T.; Majidi, H.; Abdullah, M.A.; Momand, F. Energy and Environment Efficiencies Towards Contributing to Global Sustainability. In Sustainability Outreach in Developing Countries; Springer: Singapore, 2020; pp. 1–13. [Google Scholar] [CrossRef]
- Yildiz, B.; Bilbao, J.; Dore, J.; Sproul, A. Recent advances in the analysis of residential electricity consumption and applications of smart meter data. Appl. Energy 2017, 208, 402–427. [Google Scholar] [CrossRef]
- Yang, Y.; Li, W.; Gulliver, T.; Li, S. Bayesian Deep Learning-Based Probabilistic Load Forecasting in Smart Grids. IEEE Trans. Ind. Inform. 2020, 16, 4703–4713. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, B. Scenario Forecasting of Residential Load Profiles. IEEE J. Sel. Areas Commun. 2020, 38, 84–95. [Google Scholar] [CrossRef]
- Haben, S.; Arora, S.; Giasemidis, G.; Voss, M.; Vukadinović, G. Review of low voltage load forecasting: Methods, applications, and recommendations. Appl. Energy 2021, 304, 117798. [Google Scholar] [CrossRef]
- Li, Y.; Han, D.; Yan, Z. Long-term system load forecasting based on data-driven linear clustering method. J. Mod. Power Syst. Clean Energy 2018, 6, 306–316. [Google Scholar] [CrossRef]
- Lee, C.; Ko, C. Short-term load forecasting using lifting scheme and ARIMA models. Expert Syst. Appl. 2011, 38, 5902–5911. [Google Scholar] [CrossRef]
- Haben, S.; Giasemidis, G.; Ziel, F.; Arora, S. Short term load forecasting and the effect of temperature at the low voltage level. Int. J. Forecast. 2019, 35, 1469–1484. [Google Scholar] [CrossRef]
- Litjens, G.; Worrell, E.; van Sark, W. Assessment of forecasting methods on performance of photovoltaic-battery systems. Appl. Energy 2018, 221, 358–373. [Google Scholar] [CrossRef]
- Danish, M.S.S. A Framework for Modeling and Optimization of Data-Driven Energy Systems Using Machine Learning. IEEE Trans. Artif. Intell. 2023, 5, 2434–2443. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, P.; Chu, Y.; Li, W.; Wu, Y.; Ni, L.; Bao, Y.; Wang, K. Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings. Appl. Energy 2017, 195, 659–670. [Google Scholar] [CrossRef]
- Chen, B.; Chang, M.; Lin, C. Load Forecasting Using Support Vector Machines: A Study on EUNITE Competition 2001. IEEE Trans. Power Syst. A Publ. Power Eng. Soc. 2004, 19, 1821–1830. [Google Scholar] [CrossRef]
- Xu, L.; Wang, S.; Tang, R. Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load. Appl. Energy 2019, 237, 180–195. [Google Scholar] [CrossRef]
- Raza, M.; Nadarajah, M.; Hung, D.; Baharudin, Z. An intelligent hybrid short-term load forecasting model for smart power grids. Sustain. Cities Soc. 2017, 31, 264–275. [Google Scholar] [CrossRef]
- Danish, M.S.S.; Ahmadi, M.; Ibrahimi, A.M.; Dinçer, H.; Shirmohammadi, Z.; Khosravy, M.; Senjyu, T. Data-Driven Pathways to Sustainable Energy Solutions; Springer Nature: Cham, Switzerland, 2024; pp. 1–31. [Google Scholar] [CrossRef]
- Khodayar, M.; Kaynak, O.; Khodayar, M. Rough Deep Neural Architecture for Short-Term Wind Speed Forecasting. IEEE Trans. Ind. Inform. 2017, 13, 2770–2779. [Google Scholar] [CrossRef]
- Dedinec, A.; Filiposka, S.; Dedinec, A.; Kocarev, L. Deep belief network based electricity load forecasting: An analysis of Macedonian case. Energy 2016, 115, 1688–1700. [Google Scholar] [CrossRef]
- Kuo, P.; Huang, C. A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting. Energies 2018, 11, 213. [Google Scholar] [CrossRef]
- Afrasiabi, M.; Mohammadi, M.; Rastegar, M.; Kargarian, A. Probabilistic deep neural network price forecasting based on residential load and wind speed predictions. IET Renew. Power Gener. 2019, 13, 1840–1848. [Google Scholar] [CrossRef]
- Rahman, A.; Srikumar, V.; Smith, A. Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks. Appl. Energy 2018, 212, 372–385. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, Y.; Fan, S.; Hu, X.; Huang, Y.; Lu, Z.; Liu, Y. Multi-task short-term reactive and active load forecasting method based on attention-LSTM model. Int. J. Electr. Power Energy Syst. 2022, 135, 107517. [Google Scholar] [CrossRef]
- Kong, W.; Dong, Z.; Jia, Y.; Hill, D.; Xu, Y.; Zhang, Y. Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network. IEEE Trans. Smart Grid 2019, 10, 841–851. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, L.; Zhang, P.; Wang, X.; Yan, Q. Short-term fast forecasting based on family behavior pattern recognition for small-scale users load. Clust. Comput. 2022, 25, 2107–2123. [Google Scholar] [CrossRef]
- Luong, M.; Pham, H.; Manning, C. Effective Approaches to Attention-based Neural Machine Translation. arXiv 2015. [Google Scholar] [CrossRef]
- Li, L.; Tang, S.; Zhang, Y.; Deng, L.; Tian, Q. GLA: Global–Local Attention for Image Description. IEEE Trans. Multimed. 2018, 20, 726–737. [Google Scholar] [CrossRef]
- Cinar, Y.G.; Mirisaee, H.; Goswami, P.; Gaussier, E.; Aït-Bachir, A. Period-aware content attention RNNs for time series forecasting with missing values. Neurocomputing 2018, 312, 177–186. [Google Scholar] [CrossRef]
- Alhussein, M.; Aurangzeb, K.; Haider, S. Hybrid CNN-LSTM Model for Short-Term Individual Household Load Forecasting. IEEE Access 2020, 8, 180544–180557. [Google Scholar] [CrossRef]
- Kim, T.; Cho, S. Predicting residential energy consumption using CNN-LSTM neural networks. Energy 2019, 182, 72–81. [Google Scholar] [CrossRef]
- Zang, H.; Xu, R.; Cheng, L.; Ding, T.; Liu, L.; Wei, Z.; Sun, G. Residential load forecasting based on LSTM fusing self-attention mechanism with pooling. Energy 2021, 229, 120682. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Wang, S.; Wang, D. Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting. Int. J. Electr. Power Energy Syst. 2019, 109, 470–479. [Google Scholar] [CrossRef]
- Li, C.; Dong, Z.; Ding, L.; Petersen, H.; Qiu, Z.; Chen, G. Interpretable Memristive LSTM Network Design for Probabilistic Residential Load Forecasting. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 2297–2310. [Google Scholar] [CrossRef]
- Lin, J.; Ma, J.; Zhu, J.; Cui, Y. Short-term load forecasting based on LSTM networks considering attention mechanism. Int. J. Electr. Power Energy Syst. 2022, 137, 107818. [Google Scholar] [CrossRef]
- Yousaf, S.; Bradshaw, C.R.; Kamalapurkar, R.; San, O. Investigating critical model input features for unitary air conditioning equipment. Energy Build. 2023, 284, 112823. [Google Scholar] [CrossRef]
- Aseeri, A. Effective RNN-Based Forecasting Methodology Design for Improving Short-Term Power Load Forecasts: Application to Large-Scale Power-Grid Time Series. J. Comput. Sci. 2023, 68, 101984. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Chen, K.; Chen, F.; Lai, B.; Jin, Z.; Liu, Y.; Li, K. Dynamic Spatio-Temporal Graph-Based CNNs for Traffic Flow Prediction. IEEE Access 2020, 8, 185136–185145. [Google Scholar] [CrossRef]
- Singh, G.; Bedi, J. A federated and transfer learning based approach for households load forecasting. Knowl.-Based Syst. 2024, 299, 111967. [Google Scholar] [CrossRef]
- Lin, W.; Wu, D.; Jenkin, M. Electric Load Forecasting for Individual Households via Spatial-temporal Knowledge Distillation. IEEE Trans. Power Syst. 2024, 1–13. [Google Scholar] [CrossRef]
- Mubarak, H.; Stegen, S.; Bai, F.; Abdellatif, A.; Sanjari, M. Enhancing interpretability in power management: A time-encoded household energy forecasting using hybrid deep learning model. Energy Convers. Manag. 2024, 315, 118795. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017. [Google Scholar] [CrossRef]
Model | Hyperparameter |
---|---|
SVR | Kernel = RBF |
RFR | Tree size = 100 |
RNN | Layer = 2; Hidden_size = 64; Learning rate: 1 × 10−3, Exponential decay: e0.98 per step; Optimizer: Adam; Early stop: 10 |
LSTM | Layer = 2; Hidden_size = 64; Learning rate: 1 × 10−3, Exponential decay: e0.98 per step; Optimizer: Adam; Early stop: 10 |
TLA-LSTM | 1D-CNN: Kenerl = 3; out_channel = 16 LSTM: Layer: 2; Hidden_size: 128; Learning rate: 1 × 10−3, Exponential decay: e0.98 per step; Optimizer: Adam; Early stop: 10 |
Model | R2 | MAE | MSE | RMSE | MAPE | sMAPE |
---|---|---|---|---|---|---|
SVR | −0.853 | 0.319 | 0.145 | 0.380 | 36.236 | 45.161 |
RFR | 0.323 | 0.245 | 0.090 | 0.300 | 30.703 | 36.614 |
RNN | 0.577 | 0.210 | 0.078 | 0.279 | 28.324 | 30.681 |
LSTM | 0.598 | 0.206 | 0.072 | 0.269 | 29.036 | 30.289 |
TLA-LSTM | 0.683 | 0.189 | 0.061 | 0.246 | 27.230 | 28.347 |
Window Size | R2 | MAE | MSE | RMSE | MAPE | sMAPE |
---|---|---|---|---|---|---|
2 × 2 | 0.651 | 0.192 | 0.064 | 0.252 | 27.827 | 28.630 |
3 × 3 | 0.683 | 0.189 | 0.061 | 0.246 | 27.230 | 28.347 |
4 × 4 | 0.661 | 0.193 | 0.066 | 0.256 | 28.613 | 28.424 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, W.; Liu, H.; Zhang, X.; Zeng, Y. Residential Load Forecasting Based on Long Short-Term Memory, Considering Temporal Local Attention. Sustainability 2024, 16, 11252. https://doi.org/10.3390/su162411252
Cao W, Liu H, Zhang X, Zeng Y. Residential Load Forecasting Based on Long Short-Term Memory, Considering Temporal Local Attention. Sustainability. 2024; 16(24):11252. https://doi.org/10.3390/su162411252
Chicago/Turabian StyleCao, Wenzhi, Houdun Liu, Xiangzhi Zhang, and Yangyan Zeng. 2024. "Residential Load Forecasting Based on Long Short-Term Memory, Considering Temporal Local Attention" Sustainability 16, no. 24: 11252. https://doi.org/10.3390/su162411252
APA StyleCao, W., Liu, H., Zhang, X., & Zeng, Y. (2024). Residential Load Forecasting Based on Long Short-Term Memory, Considering Temporal Local Attention. Sustainability, 16(24), 11252. https://doi.org/10.3390/su162411252