Assessing Zero-Emission Vehicles from the Customer’s Perspective by Using a Multi-Criteria Framework †
Abstract
:1. Introduction
2. Related Work
3. Methodical Approach
3.1. Interview Method
3.2. Analytic Hierarchy Process
3.3. Value Scores and Assessment Framework
4. Collecting and Selecting Assessment Criteria
Criteria/ Literature | GHG Emissions | Infrastructure Availability | Convenience/Comfort | Spaciousness | Range | Charging/Refueling Time | Total Costs | Driving Dynamics | Brand | Policy Incentives | Warranty | Design | Safety |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Achtnicht et al. [13] a | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||||
Bansal et al. [68] e,h | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||||
Byun [42] g | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||||
Byun et al. [69] d,e,h | ✔ | ✔ | ✔ | ✔ | |||||||||
Danielis et al. [28] e,h | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||||
Daziano and Bolduc [70] b,c,d | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||||
Fujita et al. [45] g | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||||
Giansoldati et al. [71] e,h | ✔ | ✔ | ✔ | ||||||||||
Glerum et al. [72] e,h | ✔ | ✔ | ✔ | ||||||||||
Hackbarth and Madlener [32] a | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||||
Hafner et al. [31] g | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||
Helveston et al. [34] d,e,f | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||||
Higgins et al. [27] c,e,f,h | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
Horne et al. [73] b,c,d | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||||
Jensen et al. [35] e,f,h | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||
Koppel et al. [36] g | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
Ling et al. [24] e,f | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||||
Mandys [17] e | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||
Mau et al. [26] c,d | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||||
Raza and Masmoudi [44] g | ✔ | ✔ | ✔ | ✔ | |||||||||
Rasouli and Timmermans [30] e | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||||
Valeri and Danielis [29] a | ✔ | ✔ | ✔ | ✔ | |||||||||
Vrkljan and Anaby [43] g | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
5. Value Scores for Criteria
5.1. Greenhouse Gas Emissions
5.2. Infrastructure Availability
5.3. Spaciousness
5.4. Range
5.5. Charging/Refueling Time
5.6. Total Costs
5.7. Driving Dynamics
6. Discussion
6.1. Relative Importance of Criteria
- total costs are less important, as the costs then might become less relevant by allocating them to the increasing kilometers driven;
- range is more important, as individuals may be more dependent on their vehicle and are likely to drive longer distances. Frequent stops for charging or refueling could be considered as an inconvenience;
- GHG emissions is less important, as individuals with less environmental awareness may be less concerned about their CO2 footprint;
- spaciousness is more important, as more time is spent in the vehicle, which might increase the desire for comfort and space;
- driving dynamics is more important, as more time is spent in the vehicle, which might increase the relevance of driving pleasure (incl. acceleration and travel speed).
6.2. Exemplary Comparison: FCEV and BEV
6.2.1. Increased Annual Mileage
6.2.2. Increased Number of Publicly Accessible Charging Stations Through Wallbox Sharing
6.2.3. Future Network of Hydrogen Refueling Stations for Trucks with Assumed Usability for FCEVs
6.2.4. Reduction in the CO2 Intensity of Electricity in Germany
6.3. Limitations and Outlook
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Guiding Question (in Original German) | English Translation of Interview Questions | |
---|---|---|
1 | Besitzen Sie ein Elektrofahrzeug, fahren Sie mit elektrifizierten Firmenfahrzeugen oder Car-Sharing Fahrzeugen? Seit wann bzw. wie häufig? | Do you own an electric vehicle, drive electrified company vehicles or car-sharing vehicles? Since when or how often? |
2 | Besitzen Sie ein Wasserstofffahrzeug, fahren Sie mit Wasserstoff-Firmenfahrzeugen oder Car-Sharing Fahrzeugen? Seit wann bzw. wie häufig? | Do you own a hydrogen vehicle, drive hydrogen company vehicles or car-sharing vehicles? Since when or how often? |
3 | Welche Anschaffungskriterien sind Ihnen bei einem reinen Elektrofahrzeug und/oder Wasserstofffahrzeug wichtig (vergleichend)? Hier technologiebezogen denken; z.B. die Optik oder das Interieur ist unabhängig von der Antriebstechnologie und muss nicht adressiert werden. | Which purchasing criteria are important to you for a pure electric vehicle and/or hydrogen vehicle (comparative)? Think in terms of technology here; e.g., the appearance or the interior is independent of the drive technology and does not have to be addressed. |
4 | Annahme: ich mache eine Umfrage, um herauszufinden welche Kriterien bei der Anschaffungsentscheidung am wichtigsten sind. Welche zusätzlichen Fragen halten Sie für sinnvoll, um die individuellen Antworten/Gewichtungen nachvollziehen zu können bzw. Teilnehmer*innen eventuell Clustern zu können. | Assumption: I am conducting a survey to find out which criteria are most important when making a purchase decision. What additional questions do you think would be useful in order to understand the individual answers/weightings and possibly to be able to cluster participants? |
5 | Was sind die Hemmnisse beim Kauf eines Wasserstoffautos, was könnte Menschen vom Kauf eines reinen Elektroautos abhalten? | What are the barriers to buying a hydrogen car, what might prevent people from buying an all-electric car? |
Annual Mileage [km]/ Criteria | Weight/Relative Importance [%] | ||||
---|---|---|---|---|---|
<5000 (n = 25) | ≥5000 and <10,000 (n = 39) | ≥10,000 and <20,000 (n = 113) | ≥20,000 and <30,000 (n = 50) | ≥30,000 (n = 17) | |
Total costs | 16.35 | 15.36 | 10.61 | 7.97 | 8.7 |
Range | 13.48 | 14.16 | 14.67 | 14.28 | 19.14 |
Charging/refueling time | 10.59 | 13.84 | 14.72 | 15.9 | 14.54 |
Infrastructure availability | 16.35 | 11.05 | 15.12 | 16.77 | 15.65 |
GHG emissions | 29.4 | 29.47 | 20.57 | 17.72 | 14.94 |
Spaciousness | 8.09 | 8.85 | 15.28 | 16.31 | 16.53 |
Driving dynamics | 5.73 | 7.27 | 9.03 | 11.06 | 10.5 |
Vacation Trips Per Year/ Criteria | Weight/Relative Importance [%] | ||||
---|---|---|---|---|---|
None (n = 22) | One (n = 42) | Two (n = 97) | Three (n = 57) | More Than Three (n = 26) | |
Total costs | 11.64 | 13.85 | 11.53 | 9.2 | 9.31 |
Range | 13.97 | 16.12 | 14.54 | 14.97 | 13.92 |
Charging/refueling time | 10.1 | 13.08 | 15.55 | 14.21 | 17.84 |
Infrastructure availability | 20.9 | 14.97 | 14.74 | 15.03 | 11.96 |
GHG emissions | 26.5 | 22.53 | 21.71 | 20.44 | 18.71 |
Spaciousness | 10.01 | 10.98 | 13.33 | 17.76 | 13.75 |
Driving dynamics | 6.89 | 8.48 | 8.61 | 8.39 | 14.51 |
Purchase Price [€]/ Criteria | Weight/Relative Importance [%] | |||||||
---|---|---|---|---|---|---|---|---|
<10,000 (n = 18) | 10,001–20,000 (n = 34) | 20,001–30,000 (n = 27) | 30,001–40,000 (n = 29) | 40,001–50,000 (n = 29) | 50,001–60,000 (n = 28) | 60,001–70,000 (n = 16) | >70,000 (n = 22) | |
Total costs | 18.84 | 15.22 | 16.86 | 8.56 | 8.66 | 8.1 | 5.21 | 6.22 |
Range | 11.52 | 14.31 | 14.07 | 15.45 | 13.11 | 18.12 | 15.46 | 14.36 |
Charging/refueling time | 11.22 | 12.29 | 13.37 | 17.09 | 13.62 | 16.83 | 16.2 | 12.41 |
Infrastructure availability | 13.33 | 15.34 | 11.35 | 11.85 | 14.71 | 16.05 | 17.74 | 21.22 |
GHG emissions | 31.98 | 24.5 | 25.36 | 26.86 | 18.43 | 15.47 | 10.53 | 12.87 |
Spaciousness | 9.85 | 11.57 | 11.73 | 13.12 | 16.48 | 17.22 | 19.69 | 14.79 |
Driving dynamics | 3.27 | 6.77 | 7.25 | 7.07 | 15.0 | 8.21 | 15.16 | 18.14 |
Net Household Income [€ Per Month]/ Criteria | Weight/Relative Importance [%] | |||
---|---|---|---|---|
<2500 (n = 33) | ≥2500 and <3500 (n = 39) | ≥3500 and <5000 (n = 70) | ≥5000 (n = 94) | |
Total costs | 17.98 | 11.07 | 10.89 | 9.32 |
Range | 10.82 | 16.47 | 15.59 | 14.93 |
Charging/refueling time | 9.3 | 16.54 | 14.57 | 15.51 |
Infrastructure availability | 12.87 | 14.34 | 15.67 | 15.17 |
GHG emissions | 33.56 | 23.17 | 19.09 | 19.56 |
Spaciousness | 9.55 | 10.41 | 14.39 | 15.8 |
Driving dynamics | 5.92 | 7.99 | 9.8 | 9.71 |
Age/ Criteria | Weight/Relative Importance [%] | ||||
---|---|---|---|---|---|
<35 (n = 52) | 35–44 (n = 37) | 45–54 (n = 65) | 55–64 (n = 52) | ≥65 (n = 38) | |
Total costs | 15.14 | 10.99 | 10.47 | 9.5 | 9.37 |
Range | 13.1 | 15.95 | 14.68 | 16.55 | 13.52 |
Charging/refueling time | 12.92 | 18.06 | 14.79 | 16.01 | 10.91 |
Infrastructure availability | 15.87 | 13.08 | 14.38 | 17.05 | 13.86 |
GHG emissions | 26.64 | 15.65 | 22.29 | 17.48 | 27.2 |
Spaciousness | 9.44 | 16.72 | 14.39 | 14.96 | 13.5 |
Driving dynamics | 6.89 | 9.54 | 8.99 | 8.45 | 11.65 |
Vehicle Subgroups/ Criteria | Weight/Relative Importance [%] | |||||
---|---|---|---|---|---|---|
SUV (n = 20) | Small Car (n = 20) | Compact Class (n = 47) | Middle Class (n = 52) | Upper Middle Class (n = 46) | Van (n = 17) | |
Total costs | 7.57 | 20.59 | 15.10 | 11.83 | 7.75 | 9.18 |
Range | 22.98 | 10.92 | 15.08 | 14.51 | 14.03 | 12.27 |
Charging/refueling time | 14.52 | 10.88 | 11.68 | 17.06 | 16.66 | 12.65 |
Infrastructure availability | 17.13 | 11.05 | 12.76 | 13.96 | 15.88 | 14.22 |
GHG emissions | 9.60 | 36.13 | 29.38 | 21.81 | 15.51 | 17.28 |
Spaciousness | 19.22 | 6.04 | 8.12 | 12.71 | 16.30 | 30.15 |
Driving dynamics | 8.97 | 4.39 | 7.89 | 8.11 | 13.86 | 4.25 |
Variable | Value | Our Sample [%] | Population [%] |
---|---|---|---|
Gender | Female | 8.5 | 17 |
Male | 89.6 | 82 | |
Diverse + no specification | 1.9 | 1 | |
Age | 18–29 years | 11 | 2 |
30–39 years | 16.4 | 10 | |
40–49 years | 20.8 | 19 | |
50–59 years | 25.6 | 37 | |
60 years and older | 24.7 | 32 | |
Main profession | Full-time employed | 72.6 | 65 |
Part-time employed | 7.1 | 10 | |
Pensioner | 15.0 | 20 | |
Other | 5.3 | 4 | |
Education | Higher educational/university degree | 77.7 | 58 |
High school degree and equivalent | 13.1 | 16 | |
Middle school degree and equivalent | 6.5 | 18 | |
German Volkshochschule or Hauptschulabschluss | 1.1 | 5 | |
Other degree | 1.6 | 3 | |
Net household income per month | More than EUR5000 | 36.6 | 44 |
EUR3500–EUR5000 | 27.1 | 18–37 | |
EUR2500–EUR3500 | 19.0 | <31 | |
EUR1500–EUR2500 | 10.6 | 3–15 | |
EUR500–EUR1500 | 3.5 | 1 | |
No answer | 2.6 | 3 |
References
- EC. A European Green Deal: Striving to Be the First Climate-Neutral Continent. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/ (accessed on 10 March 2022).
- European Council, Fit for 55. Available online: https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/ (accessed on 14 February 2024).
- IEA, Global EV Outlook 2021. 2021. Available online: https://iea.blob.core.windows.net/assets/ed5f4484-f556-4110-8c5c-4ede8bcba637/GlobalEVOutlook2021.pdf (accessed on 10 March 2022).
- Statista. Electricity in Germany. 2023. Available online: https://www.statista.com/study/146665/electricity-in-germany/ (accessed on 14 November 2024).
- Statista. Energieeffizienz in Deutschland. 2024. Available online: https://de.statista.com/statistik/studie/id/22773/dokument/energieeffizienz-in-deutschland/ (accessed on 20 November 2024).
- Hendzlik, M.; Lange, M.; Hölting, P.; Lambrecht, M.; Frey, K.; Calvet, W.; Schmied, M.; Dziekan, K.; Dross, M. Bausteine für Klimaverträglichen Verkehr: Klimaschutzinstrumente im Verkehr. German EnvironmentAgency (UBA). 2024; Available online: https://www.umweltbundesamt.de/sites/default/files/medien/366/dokumente/2024-04_kliv_uebersicht_bausteine_klimavertraeglicher_verkehr_uba.pdf (accessed on 11 December 2024).
- OECD. Germany’s Annual Sectoral Emissions Targets. Available online: https://www.oecd.org/climate-action/ipac/practices/germany-s-annual-sectoral-emissions-targets-2148cd0e/ (accessed on 24 July 2023).
- UBA. Emissionen des Verkehrs Umweltbundesamt. Available online: https://www.umweltbundesamt.de/daten/verkehr/emissionen-des-verkehrs#pkw-fahren-heute-klima-und-umweltvertraglicher (accessed on 28 April 2022).
- BMDV. Masterplan Ladeinfrastruktur II, Federal Ministry for Digital and Transport (BMDV). 2022. Available online: https://www.bmvi.de/SharedDocs/DE/Anlage/K/presse/pm-048-anlage.pdf?__blob=publicationFile (accessed on 29 July 2022).
- Fabianek, P.; Will, C.; Wolff, S.; Madlener, R. Green and regional? A multi-criteria assessment framework for the provision of green electricity for electric vehicles in Germany. Transp. Res. Part D Transp. Environ. 2020, 87, 102504. [Google Scholar] [CrossRef]
- Fabianek, P.; Madlener, R. Multi-Criteria assessment of the user experience at E-Vehicle charging stations in Germany. Transp. Res. Part D Transp. Environ. 2023, 121, 103782. [Google Scholar] [CrossRef]
- Yavuz, M.; Çapar, İ. Alternative-Fuel Vehicle Adoption in Service Fleets: Impact Evaluation Through Optimization Modeling. Transp. Sci. 2017, 51, 480–493. [Google Scholar] [CrossRef]
- Achtnicht, M.; Bühler, G.; Hermeling, C. The impact of fuel availability on demand for alternative-fuel vehicles. Transp. Res. Part D Transp. Environ. 2012, 17, 262–269. [Google Scholar] [CrossRef]
- Knez, M.; Jereb, B.; Gago, E.J.; Rosak-Szyrocka, J.; Obrecht, M. Features influencing policy recommendations for the promotion of zero-emission vehicles in Slovenia, Spain, and Poland. Clean Technol. Environ. Policy 2021, 23, 749–764. [Google Scholar] [CrossRef] [PubMed]
- Miele, A.; Axsen, J.; Wolinetz, M.; Maine, E.; Long, Z. The role of charging and refuelling infrastructure in supporting zero-emission vehicle sales. Transp. Res. Part D Transp. Environ. 2020, 81, 102275. [Google Scholar] [CrossRef]
- Shaheen, S.; Martin, E.; Totte, H. Zero-emission vehicle exposure within U.S. carsharing fleets and impacts on sentiment toward electric-drive vehicles. Transp. Policy 2020, 85, 23–32. [Google Scholar] [CrossRef]
- Mandys, F. Electric vehicles and consumer choices. Renew. Sustain. Energy Rev. 2021, 142, 110874. [Google Scholar] [CrossRef]
- Ziemba, P. Selection of Electric Vehicles for the Needs of Sustainable Transport under Conditions of Uncertainty—A Comparative Study on Fuzzy MCDA Methods. Energies 2021, 14, 7786. [Google Scholar] [CrossRef]
- Wątróbski, J.; Małecki, K.; Kijewska, K.; Iwan, S.; Karczmarczyk, A.; Thompson, R. Multi-Criteria Analysis of Electric Vans for City Logistics. Sustainability 2017, 9, 1453. [Google Scholar] [CrossRef]
- Trencher, G. Strategies to accelerate the production and diffusion of fuel cell electric vehicles: Experiences from California. Energy Rep. 2020, 6, 2503–2519. [Google Scholar] [CrossRef]
- Khan, U.; Yamamoto, T.; Sato, H. Consumer preferences for hydrogen fuel cell vehicles in Japan. Transp. Res. Part D Transp. Environ. 2020, 87, 102542. [Google Scholar] [CrossRef]
- Buberger, J.; Kersten, A.; Kuder, M.; Eckerle, R.; Weyh, T.; Thiringer, T. Total CO2-equivalent life-cycle emissions from commercially available passenger cars. Renew. Sustain. Energy Rev. 2022, 159, 112158. [Google Scholar] [CrossRef]
- Liao, F.; Molin, E.; van Wee, B. Consumer preferences for electric vehicles: A literature review. Transp. Rev. 2017, 37, 252–275. [Google Scholar] [CrossRef]
- Ling, Z.; Cherry, C.R.; Wen, Y. Determining the Factors That Influence Electric Vehicle Adoption: A Stated Preference Survey Study in Beijing, China. Sustainability 2021, 13, 11719. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.; Li, Y. Consumers’ Purchase Intentions on Hydrogen Fuel Cell Vehicles: A Review and Meta-Analysis. SSRN J. 2022. [Google Scholar] [CrossRef]
- Mau, P.; Eyzaguirre, J.; Jaccard, M.; Collins-Dodd, C.; Tiedemann, K. The ‘neighbor effect’: Simulating dynamics in consumer preferences for new vehicle technologies. Ecol. Econ. 2008, 68, 504–516. [Google Scholar] [CrossRef]
- Higgins, C.D.; Mohamed, M.; Ferguson, M.R. Size matters: How vehicle body type affects consumer preferences for electric vehicles. Transp. Res. Part A Policy Pract. 2017, 100, 182–201. [Google Scholar] [CrossRef]
- Danielis, R.; Rotaris, L.; Giansoldati, M.; Scorrano, M. Drivers’ preferences for electric cars in Italy. Evidence from a country with limited but growing electric car uptake. Transp. Res. Part A Policy Pract. 2020, 137, 79–94. [Google Scholar] [CrossRef]
- Valeri, E.; Danielis, R. Simulating the market penetration of cars with alternative fuelpowertrain technologies in Italy. Transp. Policy 2015, 37, 44–56. [Google Scholar] [CrossRef]
- Rasouli, S.; Timmermans, H. Influence of Social Networks on Latent Choice of Electric Cars: A Mixed Logit Specification Using Experimental Design Data. Netw. Spat. Econ. 2016, 16, 99–130. [Google Scholar] [CrossRef]
- Hafner, R.J.; Walker, I.; Verplanken, B. Image, not environmentalism: A qualitative exploration of factors influencing vehicle purchasing decisions. Transp. Res. Part A Policy Pract. 2017, 97, 89–105. [Google Scholar] [CrossRef]
- Hackbarth, A.; Madlener, R. Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany. Transp. Res. Part A Policy Pract. 2016, 85, 89–111. [Google Scholar] [CrossRef]
- Hackbarth, A.; Madlener, R. Combined Vehicle Type and Fuel Type Choices of Private Households: An Empirical Analysis for Germany. SSRN J. 2020, 1–53. [Google Scholar] [CrossRef]
- Helveston, J.P.; Liu, Y.; Feit, E.M.; Fuchs, E.; Klampfl, E.; Michalek, J.J. Will subsidies drive electric vehicle adoption? Measuring consumer preferences in the U.S. and China. Transp. Res. Part A Policy Pract. 2015, 73, 96–112. [Google Scholar] [CrossRef]
- Jensen, A.F.; Thorhauge, M.; Mabit, S.E.; Rich, J. Demand for plug-in electric vehicles across segments in the future vehicle market. Transp. Res. Part D Transp. Environ. 2021, 98, 102976. [Google Scholar] [CrossRef]
- Koppel, S.; Charlton, J.; Fildes, B.; Fitzharris, M. How important is vehicle safety in the new vehicle purchase process? Accid. Anal. Prev. 2008, 40, 994–1004. [Google Scholar] [CrossRef]
- Sheldon, T.L.; Dua, R. Measuring the cost-effectiveness of electric vehicle subsidies. Energy Econ. 2019, 84, 104545. [Google Scholar] [CrossRef]
- JXing BLeard, S.L.i. “What does an electric vehicle replace? J. Environ. Econ. Manag. 2021, 107, 102432. [Google Scholar] [CrossRef]
- Dua, R.; White, K.; Lindland, R. Understanding potential for battery electric vehicle adoption using large-scale consumer profile data. Energy Rep. 2019, 5, 515–524. [Google Scholar] [CrossRef]
- Yavuz, M.; Oztaysi, B.; Onar, S.C.; Kahraman, C. Multi-criteria evaluation of alternative-fuel vehicles via a hierarchical hesitant fuzzy linguistic model. Expert Syst. Appl. 2015, 42, 2835–2848. [Google Scholar] [CrossRef]
- Oztaysi, B.; Onar, S.C.; Kahraman, C.; Yavuz, M. Multi-criteria alternative-fuel technology selection using interval-valued intuitionistic fuzzy sets. Transp. Res. Part D Transp. Environ. 2017, 53, 128–148. [Google Scholar] [CrossRef]
- Byun, D. The AHP approach for selecting an automobile purchase model. Inf. Manag. 2001, 38, 289–297. [Google Scholar] [CrossRef]
- Vrkljan, B.H.; Anaby, D. What vehicle features are considered important when buying an automobile? An examination of driver preferences by age and gender. J. Saf. Res. 2011, 42, 61–65. [Google Scholar] [CrossRef]
- Raza, S.; Masmoudi, M. Consumer Vehicle Purchase Decision-making during COVID-19. In Proceedings of the 2020 International Conference on Decision Aid Sciences and Application (DASA), Sakheer, Bahrain, 8–9 November 2020; pp. 692–696. [Google Scholar]
- Fujita, K.S.; Yang, H.; Taylor, M.; Jackman, D. Green Light on Buying a Car: How Consumer Decision-Making Interacts with Environmental Attributes in the New Vehicle Purchase Process. Transp. Res. Rec. 2022, 2676, 743–762. [Google Scholar] [CrossRef]
- von Nitzsch, R. Entscheidungslehre; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2021. [Google Scholar]
- Wilson, C. Semi-Structured Interviews. In Interview Techniques for UX Practitioners, 1st ed.; Wilson, C., Ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2013; pp. 23–41. [Google Scholar]
- Jaller, M.; Pineda, L.; Gueldas, Y.; Alemi, F.; Otay, I. Fostering the Use of Zero and Near Zero Emission Vehicles in Freight Operations; National Center for Sustainable Transportation: Georgia Tech, TX, USA, 2020.
- Hamurcu, M.; Eren, T. Electric Bus Selection with Multicriteria Decision Analysis for Green Transportation. Sustainability 2020, 12, 2777. [Google Scholar] [CrossRef]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. “A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Yannis, G.; Kopsacheili, A.; Dragomanovits, A.; Petraki, V. State-of-the-art review on multi-criteria decision-making in the transport sector. J. Traffic Transp. Eng. Engl. Ed. 2020, 7, 413–431. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Brückmann, G.; Bernauer, T. An experimental analysis of consumer preferences towards public charging infrastructure. Transp. Res. Part D Transp. Environ. 2023, 116, 103626. [Google Scholar] [CrossRef]
- Anderson, J.E.; Bergfeld, M.; Nguyen, D.M.; Steck, F. Real-world charging behavior and preferences of electric vehicles users in Germany. Int. J. Sustain. Transp. 2022, 17, 1032–1046. [Google Scholar] [CrossRef]
- Visaria, A.A.; Jensen, A.F.; Thorhauge, M.; Mabit, S.E. User preferences for EV charging, pricing schemes, and charging infrastructure. Transp. Res. Part A Policy Pract. 2022, 165, 120–143. [Google Scholar] [CrossRef]
- Römer, D.; Steinbrecher, J. Die Elektromobilität Nimmt Fahrt auf—Doch wer Setzt Sich Eigentlich ans Steuer? KfW Research, Fokus Volkswirtschaft 331, May 2021. Available online: https://www.researchgate.net/publication/351658938_Die_Elektromobilitat_nimmt_Fahrt_auf_-_doch_wer_setzt_sich_eigentlich_ans_Steuer (accessed on 14 December 2021).
- NewMotion. EV Driver Survey Report 2021. 2021. Available online: https://newmotion.com/en/knowledge-center/reports-and-case-studies/ev-driver-survey-report (accessed on 24 November 2021).
- Haustein, S.; Jensen, A.F. Factors of electric vehicle adoption: A comparison of conventional and electric car users based on an extended theory of planned behavior. Int. J. Sustain. Transp. 2018, 12, 484–496. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Lane, E.F.; Verdini, W.A. A Consistency Test for AHP Decision Makers. Decis. Sci. 1989, 20, 575–590. [Google Scholar] [CrossRef]
- Costa, C.A.B.E.; Vansnick, J.-C. A critical analysis of the eigenvalue method used to derive priorities in AHP. Eur. J. Oper. Res. 2008, 187, 1422–1428. [Google Scholar] [CrossRef]
- Bozóki, S.; Rapcsák, T. On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices. J. Glob. Optim. 2008, 42, 157–175. [Google Scholar] [CrossRef]
- Kwiesielewicz, M.; van Uden, E. Inconsistent and contradictory judgements in pairwise comparison method in the AHP. Comput. Oper. Res. 2004, 31, 713–719. [Google Scholar] [CrossRef]
- Saaty, T.L. Some mathematical concepts of the Analytic Hierarchy Process. Behaviormetrika 1991, 18, 1–9. [Google Scholar] [CrossRef]
- Leiner, D.J. SoSci Survey. 2019. Available online: https://www.soscisurvey.de/ (accessed on 6 January 2023).
- Saaty, T.L. Decision-making with the AHP: Why is the principal eigenvector necessary. Eur. J. Oper. Res. 2003, 145, 85–91. [Google Scholar] [CrossRef]
- Yuan, X.; Cai, Y. Forecasting the development trend of low emission vehicle technologies: Based on patent data. Technol. Forecast. Soc. Change 2021, 166, 120651. [Google Scholar] [CrossRef]
- Bansal, P.; Kumar, R.R.; Raj, A.; Dubey, S.; Graham, D.J. Willingness to pay and attitudinal preferences of Indian consumers for electric vehicles. Energy Econ. 2021, 100, 105340. [Google Scholar] [CrossRef]
- Byun, H.; Lee, C.; Shin, J. Using a discrete choice experiment to predict the penetration possibility of environmentally friendly vehicles. Energy 2018, 144, 312–321. [Google Scholar] [CrossRef]
- Daziano, R.A.; Bolduc, D. Incorporating pro-environmental preferences towards green automobile technologies through a Bayesian hybrid choice model. Transp. A Transp. Sci. 2013, 9, 74–106. [Google Scholar] [CrossRef]
- Giansoldati, M.; Danielis, R.; Rotaris, L.; Scorrano, M. The role of driving range in consumers’ purchasing decision for electric cars in Italy. Energy 2018, 165, 267–274. [Google Scholar] [CrossRef]
- Glerum, A.; Stankovikj, L.; Thémans, M.; Bierlaire, M. Forecasting the Demand for Electric Vehicles: Accounting for Attitudes and Perceptions. Transp. Sci. 2014, 48, 483–499. [Google Scholar] [CrossRef]
- Horne, M.; Jaccard, M.; Tiedemann, K. Improving behavioral realism in hybrid energy-economy models using discrete choice studies of personal transportation decisions. Energy Econ. 2005, 27, 59–77. [Google Scholar] [CrossRef]
- Smaragdakis, A.; Kamenopoulos, S.; Tsoutsos, T. How risky is the introduction of fuel cell electric vehicles in a Mediterranean town? Int. J. Hydrogen Energy 2020, 45, 18075–18088. [Google Scholar] [CrossRef]
- López-Arquillos, A.; Rubio-Romero, J.C.; Súarez-Cebador, M.; Del Pardo-Ferreira, M.C. Comparative risk assessment of vehicle maintenance activities: Hybrid, battery electric, and hydrogen fuel cell cars. Int. J. Ind. Ergon. 2015, 47, 53–60. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Butler, B. An overview of development and challenges in hydrogen powered vehicles. Int. J. Green Energy 2020, 17, 13–37. [Google Scholar] [CrossRef]
- Thompson, S.T.; James, B.D.; Huya-Kouadio, J.M.; Houchins, C.; DeSantis, D.A.; Ahluwalia, R.; Wilson, A.R.; Kleen, G.; Papageorgopoulos, D. Direct hydrogen fuel cell electric vehicle cost analysis: System and high-volume manufacturing description, validation, and outlook. J. Power Sources 2018, 399, 304–313. [Google Scholar] [CrossRef]
- Mu, E.; Pereyra-Rojas, M. Practical Decision Making; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Bieker, G. A Global Comparison of the Life-Cycle Greenhouse Gas Emissions of Combustion Engine and Electric Passenger Cars. Berlin. 2021. Available online: https://www.alectra.com/sites/default/files/assets/pdf/Global_LCA_passenger_cars-07_2021.pdf (accessed on 9 December 2021).
- Specht, J.M.; Fabianek, P. Vergleich von Wasserstoff- und Elektromobilität: Technische, Ökonomische, Soziale und Ökologische Aspekte. RWTH Aachen University, Aachen. 2022. Available online: https://www.kopernikus-projekte.de/lw_resource/datapool/systemfiles/cbox/2378/live/lw_datei/fcn__2022__vergleich_von_wasserstoff-_und_elektromobilit-C3-A4t_final_02.pdf (accessed on 6 November 2022).
- Metais, M.O.; Jouini, O.; Perez, Y.; Berrada, J.; Suomalainen, E. Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options. Renew. Sustain. Energy Rev. 2022, 153, 111719. [Google Scholar] [CrossRef]
- Wohlan, L.; Madlener, R. A Real Options Analysis of the Siting and Cost-Efficient Layout of Charging Infrastructure for Fuel Cell and Battery Electric Vehicles. In Operations Research Proceedings 2022, Proceedings of the Selected Papers of the Annual International Conference of the German Operations Research Society (GOR), Karlsruhe, Germany, 6–9 September 2022; Grothe, O., Nickel, S., Rebennack, S., Stein, O., Eds.; Lecture Notes in Operations Research; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Statista. Wasserstoff. 2023. Available online: https://de.statista.com/statistik/daten/studie/820836/umfrage/anzahl-der-wasserstofftankstellen-in-deutschland/ (accessed on 14 November 2024).
- Statista. Tankstellenmarkt. 2023. Available online: https://de.statista.com/statistik/studie/id/26070/dokument/tankstellenmarkt-statista-dossier/ (accessed on 10 March 2022).
- Nugroho, R.; Rose, P.K.; Gnann, T.; Wei, M. Cost of a potential hydrogen-refueling network for heavy-duty vehicles with long-haul application in Germany 2050. Int. J. Hydrogen Energy 2021, 46, 35459–35478. [Google Scholar] [CrossRef]
- Huss, A.; Corneille, M. Wasserstoff-Tankstellen: Ein Leitfaden für Anwender und Entscheider. 2012. Available online: https://www.h2bz-hessen.de/mm/Wasserstofftankstellen_web.pdf (accessed on 14 November 2022).
- Bünger, D.U.; Steffen, N.; Zerhusen, J. Infrastrukturbedarf E-Mobilität: Analyse Eines Koordinierten Infrastrukturaufbaus zur Versorgung von Batterie-und Brennstoffzellen-Pkw in Deutschland. 2019. Available online: https://stiftung.adac.de/app/uploads/2019/06/IBeMo_Abschlussbericht_final_190625_LBST_Zerhusen.pdf (accessed on 11 December 2024).
- Greene, D. Survey Evidence on the Importance of Fuel Availability to Choice of Alternative Fuels and Vehicles. Oak Ridge, Tennessee, USA. 1997. Available online: https://rosap.ntl.bts.gov/view/dot/12733 (accessed on 24 November 2022).
- Statista. Elektromobilität in Deutschland—Fokus Pkw. 2023. Available online: https://de.statista.com/statistik/studie/id/6547/dokument/elektromobilitaet/ (accessed on 12 July 2023).
- Hecht, C.; Figgener, J.; Sauer, D.U. Analysis of Electric Vehicle Charging Station Usage and Profitability in Germany based on Empirical Data. 2022. Available online: https://arxiv.org/abs/2206.09582 (accessed on 26 August 2022).
- Windt, A.; Arnhold, O. Ladeinfrastruktur Nach 2025/2030: Szenarien für den Markthochlauf. Berlin. 2020. Available online: https://nationale-leitstelle.de/wp-content/pdf/broschuere-lis-2025-2030-final-web.pdf (accessed on 13 November 2022).
- VDA. Das VDA-E-Ladenetz-Ranking. German Association of the Automotive Industry (VDA). 2022. Available online: https://www.vda.de/dam/jcr:2eb81081-61a1-47e0-9330-6f6cb9d5c5f7/VDA%20Ladenetz%20Ranking%20-%20Ranking%20Bundesl%C3%A4nder%20untereinander.pdf?mode=view (accessed on 15 November 2022).
- Wiehl, G. Übersicht aktuell verfügbare Elektroautos. Available online: https://docs.google.com/spreadsheets/d/1m3QqVURB3-GGnMnqkdGvrA-n6IDpCkSf-hOtRzhLy_k/edit#gid=0 (accessed on 17 August 2022).
- ADAC. Autotest: Toyota Mirai Executive. Allgemeiner Deutscher Automobil-Club e. V. (ADAC). 2021. Available online: https://assets.adac.de/image/upload/v1635144662/ADAC-eV/KOR/Text/PDF/toyota-mirai-executive_bf1g0t.pdf (accessed on 3 December 2021).
- ADAC. Kostenvergleich e-Fahrzeuge + Plug-In Hybride Gegen Benziner und Diesel. Allgemeiner Deutscher Automobil-Club e.V. (ADAC). 2024. Available online: https://assets.adac.de/Autodatenbank/Autokosten/E-AutosVergleich.pdf (accessed on 18 August 2022).
- Liepold, C.; Fabianek, P.; Madlener, R. A critical evaluation of the 2022 greenhouse gas mitigation quota in Germany from an environmental economics and policy perspective. Energy Policy 2024, 191, 114200. [Google Scholar] [CrossRef]
- Liepold, C.; Fabianek, P.; Madlener, R. Tradable Performance Standards for a Greener Automobile Sector: An Economists’ Appraisal of the German Greenhouse Gas Mitigation Quota; FCN Working Paper; H2 MOBILITY Deutschland GmbH & Co. KG Location: Berlin, Germany, 2023. [Google Scholar] [CrossRef]
- Jensen, A.F.; Cherchi, E.; Mabit, S.L. On the stability of preferences and attitudes before and after experiencing an electric vehicle. Transp. Res. Part D Transp. Environ. 2013, 25, 24–32. [Google Scholar] [CrossRef]
- H2.LIVE. Wasserstofffahrzeuge. Available online: https://h2.live/wasserstofffahrzeuge// (accessed on 2 December 2022).
- Statista. Hochgeschwindigkeitsverkehr. 2022. Available online: https://de.statista.com/statistik/studie/id/109034/dokument/hochgeschwindigkeitsverkehr-weltweit/ (accessed on 2 December 2022).
- Palm, A. Early adopters and their motives: Differences between earlier and later adopters of residential solar photovoltaics. Renew. Sustain. Energy Rev. 2020, 133, 110142. [Google Scholar] [CrossRef]
- de Rubens, G.Z. Who will buy electric vehicles after early adopters? Using machine learning to identify the electric vehicle mainstream market. Energy 2019, 172, 243–254. [Google Scholar] [CrossRef]
- Globisch, J.; Plötz, P.; Dütschke, E.; Wietschel, M. Consumer preferences for public charging infrastructure for electric vehicles. Transp. Policy 2019, 81, 54–63. [Google Scholar] [CrossRef]
- Statista. Altersspezifische Verteilung der Haushaltsnettovermögen in Deutschland 2018. Available online: https://de.statista.com/statistik/daten/studie/1182531/umfrage/altersspezifische-verteilung-der-haushaltsvermoegen/ (accessed on 6 January 2023).
- Statista. Bruttojahresverdienst der Arbeitnehmer nach Altersgruppen 2010. Available online: https://de.statista.com/statistik/daten/studie/296286/umfrage/bruttojahresverdienst-der-arbeitnehmer-in-deutschland/ (accessed on 6 January 2023).
- Destatis. Press release No. 411 of 16 October 2020. Wiesbaden. 2020. Available online: https://www.destatis.de/EN/Press/2020/10/PE20_411_12.html (accessed on 22 December 2022).
- KBA. Kraftfahrt-Bundesamt—Pressemitteilungen—Die Nummer 1 der Segmente und die Nummer 1 der alternativen Antriebsarten im Dezember 2022—korrigierte Fassung. Available online: https://www.kba.de/DE/Presse/Pressemitteilungen/Nr1Segmente/2023/pm02_2023_nr1_seg_12_22_komplett.html?snn=3662144 (accessed on 21 November 2024).
- Statista. Autofahrer: Statista-Dossier zu den Autofahrern in Deutschland. 2021. Available online: https://de.statista.com/statistik/studie/id/7059/dokument/autofahrer-statista-dossier/ (accessed on 11 May 2023).
- NOW GmbH. Großer Fördererfolg: Rund 900.000 Wallboxen in Weniger als Einem Jahr! 2021. Available online: https://www.now-gmbh.de/aktuelles/pressemitteilungen/grosser-foerdererfolg-rund-900-000-wallboxen-in-weniger-als-einem-jahr/ (accessed on 21 November 2024).
- Fabianek, P.; Madlener, R. May I? Enabling the Sharing of Private e-Vehicles Charging Infrastructure; FCN Working Paper; Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen University: Aachen, Germany,, 2024. [Google Scholar]
- Fabianek, J.; Felzen, M.; Riester, K.R.; Beckers, S.K.; Rossaint, R.; Schröder, H.; Pitsch, M. The impact of smartphone-dispatched CPR-trained volunteers on OHCA outcomes is influenced by patient age. Sci. Rep. 2024, 14, 29671. [Google Scholar] [CrossRef]
- VDA. Hydrogen: The Future for Commercial Vehicles. Available online: https://www.vda.de/en/topics/automotive-industry/commercial-vehicles/hydrogen-tanking-infrastructure (accessed on 21 November 2024).
- Fabianek, P.; Glensk, B.; Madlener, R. A sequential real options analysis for renewable power-to-hydrogen plants for Germany and California. Renew. Sustain. Energy Rev. 2024, 192, 114159. [Google Scholar] [CrossRef]
- Fabianek, P.; Madlener, R. Techno-economic analysis and optimal sizing of hybrid PV-wind systems for hydrogen production by PEM electrolysis in California and Northern Germany. Int. J. Hydrogen Energy 2024, 67, 1157–1172. [Google Scholar] [CrossRef]
- Wietschel, M.; Preuß, S.; Kunze, R.; Keller, M. Laden von Elektrofahrzeugen in Deutschland mit Ökostromverträgen: Working Paper Sustainability and Innovationn, No. S 02/202. Karlsruhe. 2022. Available online: https://www.isi.fraunhofer.de/content/dam/isi/dokumente/sustainability-innovation/2022/WP02-2022_Laden_von_Elektrofahrzeugen_in_Deutschland_mit_Oekostromvertraegen_final.pdf (accessed on 27 December 2022).
- Ruhfus, N.; Fabianek, P.; Madlener, R. Exploring Motorists’ Attitudes that Potentially Slow Down the Market Diffusion of Battery Electric Vehicles. FCN Working Paper. 2023. Available online: https://www.fcn.eonerc.rwth-aachen.de/cms/e-on-erc-fcn/forschung/~emvl/arbeitspapiere/?lidx=1 (accessed on 27 December 2022).
- Geschke, M.; Fabianek, P.; Madlener, R. Loosening the Brakes: An Empirical Analysis of Factors Hindering the Acceptance of Fuel Cell Vehicles in Germany. FCN Working Paper. 2023. Available online: https://www.fcn.eonerc.rwth-aachen.de/global/show_document.asp?id=aaaaaaaacdxhemv (accessed on 27 December 2022).
- Daake, C.; Cammerer, M.; Hackmann, M. Comparison of the Fast Charging Capability of Electric Vehicles. 2022. Available online: https://www.p3-group.com/en/p3-updates/p3-charging-index-07-22-comparison-of-the-fast-charging-capabilities/ (accessed on 12 May 2023).
- Karczmarek, P.; Pedrycz, W.; Kiersztyn, A. Fuzzy Analytic Hierarchy Process in a Graphical Approach. Group Decis. Negot. 2021, 30, 463–481. [Google Scholar] [CrossRef]
Named Criteria | Definition | Share [%] |
---|---|---|
GHG emissions | The GHG emissions generated during the production and use of a vehicle. | 71 |
Infrastructure availability | The degree of accessibility to public or private charging points or gas pumps. The larger the number of these, the better the availability. | 100 |
Spaciousness | The space available in the vehicle interior (here: passenger area and luggage compartment). | 86 |
Range | The maximum distance a passenger car can travel with an initially full battery or full tank without stopping to recharge or refuel. | 100 |
Charging/ refueling time | The time required to refuel or recharge the vehicle. | 86 |
Total costs | The total costs of operating a passenger car (including investment costs, fuel/charging costs, repair and maintenance costs, insurance). | 71 |
Driving dynamics | The driving experience, which is measured on the basis of acceleration and top speed. | 86 |
Value Score/ Criterion | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
GHG emissions 1 | >23 | >21 | >19 | >17 | >15 | >13 | >11 | >9 | >7 | >5 | ≤5 |
Infrastructure Availability 2,3 | ≤1:28 | >1:28 | >1:26 | >1:24 | >1:22 | >1:20 | >1:18 | >1:16 | >1:14 | >1:12 | >1:10 |
<100 | <311 | <522 | <733 | <944 | <1156 | <1367 | <1578 | <1789 | <2000 | ≥2000 | |
Spaciousness 4,5 | ≤2 | 3 | 4 | 5 | 6 | ≥7 | - | - | - | - | - |
<200 | <400 | <600 | <800 | <1000 | ≥1000 | - | - | - | - | - | |
Range 6 | ≤125 | >125 | >196 | >267 | >338 | >409 | >480 | >551 | >622 | >693 | >764 |
Charging/ refueling time 7 | >60 | >54 | >48 | >42 | >36 | >29 | >23 | >17 | >11 | >5 | ≤5 |
Total costs 8 | ≥240 | <240 | <217 | <193 | <170 | <147 | <123 | <100 | <77 | <53 | <30 |
Driving dynamics 9,10 | >14 | >11.8 | >9.2 | >7.4 | >5.2 | ≤5.2 | - | - | - | - | - |
<120 | <148 | <176 | <204 | <232 | ≥232 | - | - | - | - | - |
Criteria/ Relative Importance [%] | Total Costs | Range | Charging/Refueling Time | Infrastructure Availability | GHG Emissions | Spaciousness | Driving Dynamics |
---|---|---|---|---|---|---|---|
ZEV owner | 10.2 + | 15.0 ++ | 14.8 + | 14.0 + | 21.9 +++ | 13.9 + | 10.1 + |
ZEV driver | 11.3 + | 13.9 + | 15.0 ++ | 14.9 + | 25.6 +++ | 10.9 + | 8.3 |
ZEV-interested individuals | 12.5 + | 15.4 ++ | 13.4 + | 17.1 ++ | 17.9 ++ | 16.2 ++ | 7.5 |
Criteria | Vehicle Characteristics | Value Score | Subgroup-Specific Weighting (%) | Subgroup-Specific Score |
---|---|---|---|---|
ZEV Drivers Affine to Mid-Size Sedans (n = 52) | ||||
Total costs 1 | 65.2 EUR-ct/km | 8 | 11.8 | 0.95 |
Range 2 | 510 km | 6 | 14.5 | 0.87 |
Charging/refueling time 3 | 22.4 min | 7 | 17.1 | 1.19 |
Infrastructure availability 4 | 1:12 | 8 | 14.0 | 1.12 |
GHG emissions 5 | 7 kgCO2eq/100 km | 8 | 21.8 | 1.74 |
Spaciousness 6 | 606 l; 4 seats | 5 | 12.7 | 0.64 |
Driving dynamics 7 | 225 km/h; 6.1 s | 7 | 8.1 | 0.57 |
Sum: | 7.08 |
Criteria | Vehicle Characteristics | Value Score | Subgroup-Specific Weighting (%) | Subgroup-Specific Score | ||
---|---|---|---|---|---|---|
ZEV Drivers Affine to Mid-Size Sedans (n = 52) | ||||||
Total costs 1 | 95.1 EUR-ct/km | 7 | 11.8 | 0.83 | ||
Range 2 | 650 km | 8 | 14.5 | 1.16 | ||
Charging/refueling time 3 | 5 min | 10 | 17.1 | 1.71 | ||
Infrastructure availability 4 | < 100 H2 stations | 0 | 14.0 | 0.00 | ||
GHG emissions 5 | 8 kgCO2eq/100 km | 8 | 21.8 | 1.74 | ||
Spaciousness 6 | 350 l; 4 seats | 3 | 12.7 | 0.38 | ||
Driving dynamics 7 | 175 km/h; 9.2 s | 2 | 8.1 | 0.16 | ||
Sum: | 5.98 |
20,000 km/a | 30,000 km/a | |||
---|---|---|---|---|
Vehicle | Telsa Model 3 | Toyota Mirai | Telsa Model 3 | Toyota Mirai |
Total costs [EUR-ct/km] | 53.2 | 77.3 | 41.6 | 59.9 |
Resulting value score | 8 | 8 | 9 | 8 |
Wallboxes Shared | 5% | 10% | 15% | 20% |
---|---|---|---|---|
Ratio of publicly accessible charging points to BEVs | 1:9 | 1:7 | 1:6 | 1:5 |
Resulting value score | 10 | 10 | 10 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabianek, P.; Madlener, R. Assessing Zero-Emission Vehicles from the Customer’s Perspective by Using a Multi-Criteria Framework. Sustainability 2024, 16, 11149. https://doi.org/10.3390/su162411149
Fabianek P, Madlener R. Assessing Zero-Emission Vehicles from the Customer’s Perspective by Using a Multi-Criteria Framework. Sustainability. 2024; 16(24):11149. https://doi.org/10.3390/su162411149
Chicago/Turabian StyleFabianek, Paul, and Reinhard Madlener. 2024. "Assessing Zero-Emission Vehicles from the Customer’s Perspective by Using a Multi-Criteria Framework" Sustainability 16, no. 24: 11149. https://doi.org/10.3390/su162411149
APA StyleFabianek, P., & Madlener, R. (2024). Assessing Zero-Emission Vehicles from the Customer’s Perspective by Using a Multi-Criteria Framework. Sustainability, 16(24), 11149. https://doi.org/10.3390/su162411149