Assessing the Role of Machine Learning in Climate Research Publications
<p>Research flow methodology.</p> "> Figure 2
<p>EDA steps, inspired by [<a href="#B37-sustainability-16-11086" class="html-bibr">37</a>].</p> "> Figure 3
<p>Bibliometric techniques.</p> "> Figure 4
<p>Evolution of the number of publications and the average citations per year from 2004 to 2024.</p> "> Figure 5
<p>Top 50 countries based on their number of published articles in climate research and ML.</p> "> Figure 6
<p>Most popular 20 research areas by number of publications in the climate and ML research.</p> "> Figure 7
<p>Thematic map of grouped Keywords Plus for the climate–ML publications.</p> "> Figure 8
<p>Top 20 most popular journals by number of publications containing articles about climate research and ML.</p> "> Figure 9
<p>Factorial map of Keywords Plus for climate–ML publications.</p> "> Figure 10
<p>Word cloud from the Keywords Plus field; climate and ML research.</p> "> Figure 11
<p>Word cloud from abstract bigrams; climate and ML research.</p> "> Figure 12
<p>Coherence score for LDA vs. number of topics.</p> "> Figure 13
<p>LDA topics as word clouds.</p> "> Figure 14
<p>LDA—topic visualization using pyLDAvis.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Methods and Data
3.1. Exploratory Data Analysis (EDA)
3.2. Exploratory Factorial Analysis (EFA)
3.3. Bibliometrics
3.4. Knowledge Graph and Node2Vec
3.5. K-Means
3.6. Latent Dirichlet Allocation
4. Results
4.1. Exploratory Data Analysis
4.2. Factorial Map for Keywords Plus Using EFA
4.3. Text Mining
4.3.1. Keywords Plus Word Cloud
4.3.2. Knowledge Graph for Pairs of Keywords Plus
4.3.3. Bigrams Word Cloud from Abstracts Mining
4.3.4. LDA from Abstracts Mining
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Papadopoulos, T.; Balta, M. Climate Change and big data analytics: Challenges and opportunities. Int. J. Inf. Manag. 2022, 63, 102448. [Google Scholar] [CrossRef]
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef] [PubMed]
- Scott, D. Sustainable Tourism and the Grand Challenge of Climate Change. Sustainability 2021, 13, 1966. [Google Scholar] [CrossRef]
- IPCC. Special Report on Global Warming of 1.5 °C. IPCC Spec. Rep. Impacts Glob. Warm. 2018, 1, 93–174. [Google Scholar]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Take Climate Action in Your Community. The White House, 27 January 2021. [Online]. Available online: https://www.whitehouse.gov/climate/ (accessed on 12 October 2024).
- China’s Policies and Actions for Addressing Climate Change; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2022.
- Burnett, N.; Stewart, I.; Hinson, S.; Tyers, R.; Hutton, G.; Malik, X. The UK’s Plans and Progress to Reach Net Zero by 2050; House of Commons Library: London, UK, 2024. [Google Scholar]
- Ukoba, K.; Onisuru, O.R.; Jen, T.-C. Harnessing machine learning for sustainable futures: Advancements in renewable energy and climate change mitigation. Bull. Natl. Res. Cent. 2024, 48, 99. [Google Scholar] [CrossRef]
- Materia, S.; García, L.P.; van Straaten, C.O.S.; Mamalakis, A.; Cavicchia, L.; Coumou, D.; de Luca, P.; Kretschmer, M.; Donat, M. Artificial intelligence for climate prediction of extremes: State of the art, challenges, and future perspectives. WIREs Clim. Change 2024, 15, e914. [Google Scholar] [CrossRef]
- Mukherjee, D.; Lim, W.M.; Kumar, S.; Donthu, N. Guidelines for advancing theory and practice through bibliometric research. J. Bus. Res. 2022, 148, 101–115. [Google Scholar] [CrossRef]
- Haunschild, R.; Bornmann, L.; Marx, W. Climate Change Research in View of Bibliometrics. PLoS ONE 2016, 11, e0160393. [Google Scholar] [CrossRef]
- Grieneisen, M.; Zhang, M. The current status of climate change research. Nat. Clim Change 2011, 2, 72–73. [Google Scholar] [CrossRef]
- Li, J.; Wang, M.-H.; Ho, Y.-S. Trends in research on global climate change: A Science Citation Index Expanded-based analysis. Glob. Planet. Change 2011, 77, 13–20. [Google Scholar] [CrossRef]
- Rolnick, D.; Donti, P.L.; Kaack, L.H.; Kochanski, K.; Lacoste, A.; Sankaran, K.; Ross, A.S.; Milojevic-Dupont, N.; Jaques, N.; Waldman-Brown, A.; et al. Tackling Climate Change with Machine Learning. ACM Comput. Surv. 2022, 55, 1–96. [Google Scholar] [CrossRef]
- Watson-Parris, D. Machine learning for weather and climate are worlds apart. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2021, 379, 20200098. [Google Scholar] [CrossRef] [PubMed]
- Zennaro, F.; Furlan, E.; Simeoni, C.; Torresan, S.; Aslan, S.; Critto, A.; Marcomini, A. Exploring machine learning potential for climate change risk assessment. Earth-Sci. Rev. 2021, 220, 103752. [Google Scholar] [CrossRef]
- Ardabili, S.; Mosavi, A.; Dehghani, M.; Várkonyi-Kóczy, A. Deep Learning and Machine Learning in Hydrological Processes Climate Change and Earth Systems a Systematic Review. In Engineering for Sustainable Future. INTER-ACADEMIA 2019. Lecture Notes in Networks and Systems; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Volume 101. [Google Scholar]
- Chen, L.; Han, B.; Wang, X.; Zhao, J.; Yang, W.; Yang, Z. Machine Learning Methods in Weather and Climate Applications: A Survey. Appl. Sci. 2023, 13, 12019. [Google Scholar] [CrossRef]
- Uthirapathy, S.; Sandanam, D. Topic Modelling and Opinion Analysis on Climate Change Twitter Data Using LDA and BERT Model. Procedia Comput. Sci. 2022, 218, 908–917. [Google Scholar] [CrossRef]
- Wu, M.; Long, R.; Chen, F.; Chen, H.; Bai, Y.; Cheng, K.; Huang, H. Spatio-temporal difference analysis in climate change topics and sentiment orientation: Based on LDA and BiLSTM model. Resour. Conserv. Recycl. 2013, 188, 106697. [Google Scholar] [CrossRef]
- Ejaz, W.; Ittefaq, M.; Jamil, S. Politics triumphs: A topic modeling approach for analyzing news media coverage of climate change in Pakistan. J. Sci. Commun. 2023, 22, A02. [Google Scholar] [CrossRef]
- Văduva, A.-G.; Munteanu, M.; Oprea, S.-V.; Bâra, A.; Niculae, A.-M. Understanding Climate Change and Air Quality over the Last Decade: Evidence from News and Weather Data Processing. IEEE Access 2023, 11, 144631–144648. [Google Scholar] [CrossRef]
- Deo, K.; Prasad, A. Exploring Climate Change Adaptation, Mitigation and Marketing Connections. Sustainability 2022, 14, 4255. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, J.; Wang, J.; Ding, L.; Ding, C.; Li, Y.; Zhou, Q.; Li, D.; Zhang, H. Trends in Diatom Research Since 1991 Based on Topic Modeling. Microorganisms 2019, 7, 213. [Google Scholar] [CrossRef] [PubMed]
- Zou, T.; Guo, P.; Li, F.; Wu, Q. Research topic identification and trend prediction of China’s energy policy: A combined LDA-ARIMA approach. Renew. Energy 2024, 220, 119619. [Google Scholar] [CrossRef]
- Dayeen, F.R.; Sharma, A.S.; Derrible, S. A text mining analysis of the climate change literature in industrial ecology. J. Ind. Ecol. 2020, 24, 276–284. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Guo, J.; Wang, J.; Li, Y. Shifts in periphyton research themes over the past three decades. Environ. Sci. Pollut. Res. 2023, 30, 5281–5295. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, A.; Simangan, D.; Kaneko, S. Three decades of research on climate change and peace: A bibliometrics analysis. Sustain. Sci. 2020, 16, 1079–1095. [Google Scholar] [CrossRef]
- AR4 Climate Change 2007: Synthesis Report; IPCC: Geneva, Switzerland, 2007.
- Birkle, C.; Pendlebury, D.; Schnell, J.; Adams, J. Web of Science as a data source for research on scientific and scholarly activity. Quant. Sci. Stud. 2020, 1, 363–376. [Google Scholar] [CrossRef]
- Tennant, J.P.; Waldner, F.; Jacques, D.C.; Masuzzo, P.; Collister, L.B.; Hartgerink, C.H.J. The academic, economic and societal impacts of Open Access: An evidence-based review. F1000Research 2016, 5, 1–57. [Google Scholar] [CrossRef]
- Osborne, J.W. Best Practices in Data Cleaning: A Complete Guide to Everything You Need to Do Before and After Collecting Your Data; SAGE Publications, Inc.: New York, NY, USA, 2012. [Google Scholar]
- Baillie, M.; Cessie, S.L.; Schmidt, C.O.; Lusa, L.; Huebner, M. Ten simple rules for initial data analysis. PLoS Comput. Biol. 2022, 18, e1009819. [Google Scholar] [CrossRef] [PubMed]
- Komorowski, M.; Marshall, D.C.; Salciccioli, J.D.; Crutain, Y. Exploratory Data Analysis. In Secondary Analysis of Electronic Health Records, MIT Critical Data; Springer: Berlin/Heidelberg, Germany, 2016; pp. 185–203. [Google Scholar]
- Unwin, A. Exploratory Data Analysis. In International Encyclopedia of Education, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 156–161. [Google Scholar]
- Exploratory Data Analysis and Data Envelopment Analysis of Construction and Demolition Waste Management in the European Economic Area. Sustainability 2020, 12, 4995. [CrossRef]
- Yong, A.G.; Pearce, S. A Beginner’s Guide to Factor Analysis: Focusing on Exploratory Factor Analysis. Tutor. Quant. Methods Psychol. 2013, 9, 79–94. [Google Scholar] [CrossRef]
- Lee, S.-Y. Handbook of Latent Variable and Related Models; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Hair, J.F.; Anderson, R.E.; Black, W.C. Multivariate Data Analysis, 7th ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Yang, S.; Yuan, Q.; Dong, J. Are Scientometrics, Informetrics, and Bibliometrics Different? Data Sci. Informetr. 2020, 1, 103597. [Google Scholar]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Glänzel, W. Bibliometrics as a Research Field: A Course on Theory and Application of Bibliometric Indicators; Course Handouts, 2003. Available online: https://www.researchgate.net/publication/242406991_Bibliometrics_as_a_research_field_A_course_on_theory_and_application_of_bibliometric_indicators (accessed on 1 November 2024).
- Fensel, D.; Şimşek, U.; Angele, K.; Huaman, E.; Kärle, E.; Panasiuk, O.; Toma, I.; Umbrich, J.; Wahler, A. What Is A Knowledge Graph? In Knowledge Graphs: Methodology, Tools and Selected Use Cases; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–10. [Google Scholar]
- Grohe, M. word2vec, node2vec, graph2vec, X2vec: Towards a Theory of Vector Embeddings of Structured Data. In PODS’20: Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems; ACM: New York, NY, USA, 2020. [Google Scholar]
- Ahmed, M.; Seraj, R.; Islam, S.M.S. The k-means Algorithm: A Comprehensive Survey and Performance Evaluation. Electronics 2020, 9, 1295. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Griffiths, T.L.; Steyvers, M. Finding scientific topics. Proc. Natl. Acad. Sci. USA 2004, 101, 5228–5235. [Google Scholar] [CrossRef]
- Jelodar, H.; Wang, Y.; Yuan, C.; Feng, X.; Jiang, X.; Li, Y.; Zhao, L. Latent Dirichlet Allocation (LDA) and Topic modeling: Models, applications, a survey. Multimed. Tools Appl. 2019, 78, 15169–15211. [Google Scholar] [CrossRef]
- Al Sailawi, A.; Kangavari, M. Analyzing the Use of Social Media Data to Understand Long-Term Crisis Management Challenges of COVID-19. Fusion Pract. Appl. 2023, 14, 227–243. [Google Scholar] [CrossRef]
- O’Callaghan, D.; Greene, D.; Carthy, J.; Cunningham, P. An analysis of the coherence of descriptors in topic modeling. Expert Syst. Appl. 2015, 42, 5645–5657. [Google Scholar] [CrossRef]
- Röder, M.; Both, A.; Hinneburg, A. Exploring the Space of Topic Coherence Measures. In Proceedings of the WSDM 2015—Proceedings of the 8th ACM International Conference on Web Search and Data Mining, Shanghai, China, 2–6 February 2015. [Google Scholar]
- Perga, M.-E.; Sarrasin, O.; Steinberger, J.; Lane, S.N.; Butera, F. The climate change research that makes the front page: Is it fit to engage societal action? Glob. Environ. Change 2023, 80, 102675. [Google Scholar] [CrossRef]
- Mobility 2030: Meeting the Challenges to Sustainability; World Business Council for Sustainable Development (WBCSD): Chicago, IL, USA, 2004.
- Cobo, M.; López-Herrera, A.; Herrera-Viedma, E.; Herrera, F. Science mapping software tools: Review, analysis, and cooperative study among tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Sievert, C.; Shirley, K. LDAvis: A method for visualizing and interpreting topics. In Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces, Baltimore, MD, USA, 27 June 2014; pp. 63–70. [Google Scholar]
General Topic | Values |
---|---|
Timespan | 2004–2024 |
Sources (journals, books, etc.) | 1356 |
Documents | 7521 |
Annual growth rate % | 37.39 |
Document average age | 2.11 |
Average citations per document | 17.87 |
Average citations per year per document | 4.152 |
Keywords Plus | 11,345 |
Authors’ keywords | 17,103 |
Author appearances | 45,767 |
Authors of single-authored documents | 142 |
Single-authored documents | 149 |
Documents per author | 0.231 |
Co-authors per document | 6.09 |
COUNTRY | ARTICLES | FREQUENCY | SCP | MCP | MCP_RATIO |
---|---|---|---|---|---|
USA | 1482 | 0.1983 | 1028 | 454 | 0.306 |
China | 1389 | 0.1859 | 893 | 496 | 0.357 |
Germany | 621 | 0.0831 | 343 | 278 | 0.448 |
United Kingdom | 341 | 0.0456 | 128 | 213 | 0.625 |
Australia | 285 | 0.0381 | 118 | 167 | 0.586 |
Canada | 258 | 0.0345 | 154 | 104 | 0.403 |
Italy | 230 | 0.0308 | 129 | 101 | 0.439 |
Republic of Korea | 213 | 0.0285 | 133 | 80 | 0.376 |
Spain | 213 | 0.0285 | 126 | 87 | 0.408 |
India | 205 | 0.0274 | 141 | 64 | 0.312 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niculae, A.-M.; Oprea, S.-V.; Văduva, A.-G.; Bâra, A.; Andreescu, A.-I. Assessing the Role of Machine Learning in Climate Research Publications. Sustainability 2024, 16, 11086. https://doi.org/10.3390/su162411086
Niculae A-M, Oprea S-V, Văduva A-G, Bâra A, Andreescu A-I. Assessing the Role of Machine Learning in Climate Research Publications. Sustainability. 2024; 16(24):11086. https://doi.org/10.3390/su162411086
Chicago/Turabian StyleNiculae, Andreea-Mihaela, Simona-Vasilica Oprea, Alin-Gabriel Văduva, Adela Bâra, and Anca-Ioana Andreescu. 2024. "Assessing the Role of Machine Learning in Climate Research Publications" Sustainability 16, no. 24: 11086. https://doi.org/10.3390/su162411086
APA StyleNiculae, A. -M., Oprea, S. -V., Văduva, A. -G., Bâra, A., & Andreescu, A. -I. (2024). Assessing the Role of Machine Learning in Climate Research Publications. Sustainability, 16(24), 11086. https://doi.org/10.3390/su162411086