Study on Mechanical Characteristics of Living Stumps and Reinforcement Mechanisms of Slopes
<p>The slope reinforced with the living stumps.</p> "> Figure 2
<p>Test device: (<b>a</b>) the model box; (<b>b</b>) loading device.</p> "> Figure 3
<p>Schematic diagram of slope model: (<b>a</b>) the slope model; (<b>b</b>) plan view of the rooted slope.</p> "> Figure 4
<p>Number of root systems of the slope toe.</p> "> Figure 5
<p>Imc (Imc Test, Germany) and Donghua data acquisition instrument (Donghua test, China).</p> "> Figure 6
<p>The living-stump model: (<b>a</b>) living-stump model (made by 3D Max); (<b>b</b>) living-stump model (made by 3D printing).</p> "> Figure 7
<p>Living-stump strain gauge arrangement.</p> "> Figure 8
<p>Axial stress of tap roots: (<b>a</b>) living stump at slope top; (<b>b</b>) living stump at slope middle; (<b>c</b>) living stump at slope toe.</p> "> Figure 9
<p>Moment of tap roots: (<b>a</b>) living stump at slope top; (<b>b</b>) living stump at slope middle; (<b>c</b>) living stump at slope toe; (<b>d</b>) deformation of living stump at slope top after test.</p> "> Figure 10
<p>Axial stress of lateral roots: (<b>a</b>) lateral root A of living stump at slope top; (<b>b</b>) lateral root B of living stump at slope top; (<b>c</b>) lateral root A of living stump at slope middle; (<b>d</b>) lateral root B of living stump at slope middle.</p> "> Figure 11
<p>Axial stress of lateral roots of living stump at the slope toe: (<b>a</b>) lateral root A; (<b>b</b>) lateral root B; (<b>c</b>) lateral root C.</p> "> Figure 12
<p>Slope soil after excavation.</p> "> Figure 13
<p>Horizontal displacement of slope surface: (<b>a</b>) the prototype slope; (<b>b</b>) the living-stump slope.</p> "> Figure 14
<p>Living-stump model (established via the embedded element method using MIDAS GTS/NX).</p> "> Figure 15
<p>Slope model.</p> "> Figure 16
<p>Comparison of results from model tests and numerical simulations: (<b>a</b>) stress at the fourth point of tap root (living stump in the middle of the slope); (<b>b</b>) stress at the fourth point of lateral root B (living stump in the middle of the slope).</p> "> Figure 17
<p>Schematic diagram of the incident angle of the lateral roots.</p> "> Figure 18
<p>Schematic diagram of the longitudinal section of the slope.</p> "> Figure 19
<p>Soil shear stress in longitudinal profile of unsupported slope: (<b>a</b>) the slope toe; (<b>b</b>) the middle of the slope; (<b>c</b>) the slope top.</p> "> Figure 20
<p>Soil shear stress in longitudinal profile of living-stump slope: (<b>a</b>) the slope toe; (<b>b</b>) the middle of the slope; (<b>c</b>) the slope top.</p> "> Figure 21
<p>Soil shear stress in cross-section of slope with or without lateral root system: (<b>a</b>) the slope without lateral roots; (<b>b</b>) the slope with lateral roots.</p> "> Figure 22
<p>Soil shear stress in slope’s cross-section: (<b>a</b>) lateral root incidence is 0°; (<b>b</b>) lateral root incidence is 40°.</p> "> Figure 23
<p>Soil shear stress in longitudinal section of slope toe: (<b>a</b>) lateral root incidence is 0°; (<b>b</b>) lateral root incidence is 40°.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Test Similarity Ratio
2.2. Model Test Design
2.3. Selection and Modeling of Living Stump
3. Results
3.1. Roots Stress Characteristics
3.2. Lateral Roots Stress Characteristics
3.3. Slope Surface Displacement
4. Discussion
4.1. Model Reliability Verification
4.2. The Shear Stress of Living-Stump Slope and Original Slope
4.3. The Influence of Lateral Roots on the Slope Reinforcement Mechanism
5. Conclusions
- (1)
- Under a static load, the displacement of the living-stump slope is similar to that of the original slope, whereas the displacement of the former is significantly smaller than that of the latter. The tap root, as well as the lateral root A growing in the slope direction and the lateral root B growing laterally of the living stump in the middle and lower sections of the slope, effectively exerts its tensile strength in order to enhance the stability of the slope.
- (2)
- The tap roots of the living stump in the middle and lower parts of the slope are mainly subject to positive bending moments and the front part of the roots are tensioned, while the tap root at the top of slope is mainly subject to negative bending moments. Measuring point 2 (under the first layer lateral root) is the main bending part of the tap root.
- (3)
- The living stumps tap roots at the slope foot across the potential sliding surface, due to the tap root vertical growth, and have certain rigidity and strong tensile resistance. Through the interaction of roots and soil, the shear stress of the soil gradually transfers to the root system of the living stump, which makes the shear stress area of the slope soil deeper and improves the stability of the slope.
- (4)
- The lateral root growth pattern creates a mesh-like structure that binds the soil particles more effectively. The vertical root system has higher stiffness and tensile strength, and grows vertically along the depth direction, serving as the skeleton of the entire mesh structure. The combined effect of the tap root and lateral root system forms a solid overall structure that can withstand the soil shear stress, which ultimately increases the slope’s stability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Waldron, L.J. The shear resistance of root-permeated homogeneous and stratified soil. Soil Sci. Soc. Am. J. 1977, 41, 843–849. [Google Scholar] [CrossRef]
- Wu, T.H.; McKinnell, W.P., III; Swanston, D.N. Strength of tree roots and landslides on Prince of Wales Island, Alaska. Can. Geotech. J. 1979, 16, 19–33. [Google Scholar] [CrossRef]
- Gray, D.H.; Leiser, A.T. Biotechnical Slope Protection and Erosion Control; Van Nostrand Reinhold Company Inc.: New York, NY, USA, 1982. [Google Scholar]
- Fan, C.-C.; Chen, Y.-W. The effect of root architecture on the shearing resistance of root-permeated soils. Ecol. Eng. 2010, 36, 813–826. [Google Scholar] [CrossRef]
- Donn, S.; Wheatley, R.E.; McKenzie, B.M.; Loades, K.W.; Hallett, P.D. Improved soil fertility from compost amendment increases root growth and reinforcement of surface soil on slopes. Ecol. Eng. 2014, 71, 458–465. [Google Scholar] [CrossRef]
- McGuire, L.A.; Rengers, F.K.; Kean, J.W.; Coe, J.A.; Mirus, B.B.; Baum, R.L.; Godt, J.W. Elucidating the role of vegetation in the initiation of rainfall-induced shallow landslides: Insights from an extreme rainfall event in the Colorado Front Range. Geophys. Res. Lett. 2016, 43, 9084–9092. [Google Scholar] [CrossRef]
- Cohen, D.; Schwarz, M. Tree-root control of shallow landslides. Earth Surf. Dyn. 2017, 5, 451–477. [Google Scholar] [CrossRef]
- Bordoni, M.; Cislaghi, A.; Vercesi, A.; Bischetti, G.; Meisina, C. Effects of plant roots on soil shear strength and shallow landslide proneness in an area of northern Italian Apennines. Bull. Eng. Geol. Environ. 2020, 79, 3361–3381. [Google Scholar] [CrossRef]
- Donjadee, S.; Tingsanchali, T. Soil and water conservation on steep slopes by mulching using rice straw and vetiver grass clippings. Agric. Nat. Resour. 2016, 50, 75–79. [Google Scholar] [CrossRef]
- Nguyen, T.S.; Likitlersuang, S.; Jotisankasa, A. Influence of the spatial variability of the root cohesion on a slope-scale stability model: A case study of residual soil slope in Thailand. Bull. Eng. Geol. Environ. 2019, 78, 3337–3351. [Google Scholar] [CrossRef]
- Löbmann, M.T.; Geitner, C.; Wellstein, C.; Zerbe, S. The influence of herbaceous vegetation on slope stability—A review. Earth-Sci. Rev. 2020, 209, 103328. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, H.; Liu, Y.; Jiang, X.; Deng, R.; Huang, L.; Yin, P.; Lai, G.J.G.; Engineering, G. Numerical simulation of the combined slope protection effect of living stump and bamboo anchor. Geotech. Geol. Eng. 2021, 40, 635–645. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, W.; Yang, H.; Li, Z.; Fan, W.; Wang, F. A 3D Model Applied to Analyze the Mechanical Characteristic of Living Stump Slope with Different Tap Root Lengths. Appl. Sci. 2023, 13, 1978. [Google Scholar] [CrossRef]
- Wu, T.H.; Kokesh, C.M.; Trenner, B.R.; Fox, P.J. Use of live poles for stabilization of a shallow slope failure. Geotech. Geoenviron. Eng. 2014, 140, 05014001. [Google Scholar] [CrossRef]
- Dupuy, L.; Fourcaud, T.; Stokes, A. A numerical investigation into the influence of soil type and root architecture on tree anchorage. Plant Soil 2005, 278, 119–134. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Ma, C.; Zhang, H.; Wang, Y.; Song, S.; Zhu, J. Influence of the spatial layout of plant roots on slope stability. Ecol. Eng. 2016, 91, 477–486. [Google Scholar] [CrossRef]
- Danjon, F.; Reubens, B. Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant Soil 2008, 303, 1–34. [Google Scholar] [CrossRef]
- Fan, C.-C.; Lai, Y.-F. Influence of the spatial layout of vegetation on the stability of slopes. Plant Soil 2014, 377, 83–95. [Google Scholar] [CrossRef]
- Fan, C.-C.; Huang, C.-H.; Chen, J.-H. Role of Plant Root Morphology in the Stability of Vegetated Slopes. J. GeoEng. 2019, 14, 219–227. [Google Scholar]
- Yang, M. Tree Root Anchorage: Modelling and Numerical Analyses of Key Contributing Factors of Wind Firmness of Pinus Pinaster. Ph.D. Thesis, Université de Bordeaux, Bordeaux, France, 2014. [Google Scholar]
- Jiang, X.; Hou, L.; Shang, S.; Xu, L.; Yu, H. Physical Modeling of a Shallow-Buried Metro Tunnel in the Soft Loess Layer Using Similarity Theory. Adv. Civ. Eng. 2022, 2022, 5587116. [Google Scholar] [CrossRef]
- Wang, Z.J.; Fan, G.; Cao, L.C.; Chang, J.Y. An isolated similarity design method for shaking table tests on reinforced slopes. J. Mt. Sci. 2021, 18, 2460–2474. [Google Scholar] [CrossRef]
- Liang, T.; Knappett, J.; Duckett, N.J.G. Modelling the seismic performance of rooted slopes from individual root–soil interaction to global slope behaviour. Géotechnique 2015, 65, 995–1009. [Google Scholar] [CrossRef]
- Vergani, C.; Giadrossich, F.; Buckley, P.; Conedera, M.; Pividori, M.; Salbitano, F.; Rauch, H.; Lovreglio, R.; Schwarz, M. Root reinforcement dynamics of European coppice woodlands and their effect on shallow landslides: A review. Earth-Sci. Rev. 2017, 167, 88–102. [Google Scholar] [CrossRef]
- Kokutse, N.; Fourcaud, T.; Kokou, K.; Neglo, K.; Lac, P. 3D numerical modelling and analysis of the influence of forest structure on hill slopes stability. In Proceedings of the Interpraevent, Niigata, Japan, 25–29 September 2006; pp. 561–567. [Google Scholar]
- Watson, A.; Marden, M.; Rowan, D. Tree species performance and slope stability. Veg. Slopes 1995, 161–171. [Google Scholar]
- Wanfu, W.; Fasi, W.; Ruihong, X.; Dongpeng, H.; Fei, Q. Spatial distribution of root system at earthen ruins revealed by ground penetrating radar. J. Desert Res. 2015, 35, 1163–1170. [Google Scholar]
- Mickovski, S.B.; Hallett, P.D.; Bransby, M.F.; Davies, M.C.; Sonnenberg, R.; Bengough, A.G. Mechanical reinforcement of soil by willow roots: Impacts of root properties and root failure mechanism. Soil Sci. Soc. Am. J. 2009, 73, 1276–1285. [Google Scholar] [CrossRef]
- Schwarz, M.; Cohen, D.; Or, D. Spatial characterization of root reinforcement at stand scale: Theory and case study. Geomorphology 2012, 171, 190–200. [Google Scholar] [CrossRef]
- Zhu, J.; Leung, A.K. A modified embedded beam element to improve the modelling of root-soil interfacial behaviour. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 23–28 April 2023; p. EGU-6078. [Google Scholar]
- Pollen, N. Temporal and spatial variability in root reinforcement of streambanks: Accounting for soil shear strength and moisture. Catena 2007, 69, 197–205. [Google Scholar] [CrossRef]
- Schwarz, M.; Giadrossich, F.; Cohen, D. Modeling root reinforcement using a root-failure Weibull survival function. Hydrol. Earth Syst. Sci. 2013, 17, 4367–4377. [Google Scholar] [CrossRef]
- Kolb, E.; Legué, V.; Bogeat-Triboulot, M.-B. Physical root–soil interactions. Phys. Biol. 2017, 14, 065004. [Google Scholar] [CrossRef]
- Dunbabin, V.M.; Postma, J.A.; Schnepf, A.; Pagès, L.; Javaux, M.; Wu, L.; Leitner, D.; Chen, Y.L.; Rengel, Z.; Diggle, A.J.; et al. Modelling root–soil interactions using three–dimensional models of root growth, architecture and function. Plant Soil 2013, 372, 93–124. [Google Scholar] [CrossRef]
- Sonnenberg, R.; Bransby, M.F.; Bengough, A.G.; Hallett, P.D.; Davies, M.C.R. Centrifuge modelling of soil slopes containing model plant roots. Can. Geotech. J. 2012, 49, 1415–1430. [Google Scholar] [CrossRef]
- Stokes, A.; Atger, C.; Bengough, A.G.; Fourcaud, T.; Sidle, R.C. Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 2009, 324, 1–30. [Google Scholar] [CrossRef]
- Schmidt, K.; Roering, J.; Stock, J.; Dietrich, W.; Montgomery, D.; Schaub, A.T. The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Can. Geotech. J. 2001, 38, 995–1024. [Google Scholar] [CrossRef]
- Reubens, B.; Poesen, J.; Danjon, F.; Geudens, G.; Muys, B. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: A review. Trees 2007, 21, 385–402. [Google Scholar] [CrossRef]
Physical Quantities | Similarity Ratio Expression | Similarity Ratio |
---|---|---|
Length/m | 15 | |
Density/(kg·m−3) | 1 | |
Modulus of elasticity/MPa | 1 | |
Stress/kPa | 1 | |
Poisson’s ratio | 1 | |
Displacement/mm | 15 | |
Angle of internal friction/° | 1 | |
Gravity γ/(kN·m−3) | 1 | |
Cohesion c/(kN·m−2) | 1 | |
Load/w | 1 |
Materials | Modulus of Elasticity/MPa | Unit Weight/(kN·m3) | Poisson’s Ratio/ν | Cohesion c/kPa | Angle of Internal Friction/° |
---|---|---|---|---|---|
soil | 40 | 18.37 | 0.32 | 12 | 18.5 |
root | 650 | 11.37 | 0.3 | - | - |
The Sensor | Type | Main Parameters |
---|---|---|
Resistive strain gauge | BFH120-2AA-D150 | Sensitive coefficient 2.0 ± 1% Precision grade: A |
Displacement meter | 0–100 mm digital dial indicator | Precision: 0.01 mm |
Lateral Root Length | Lateral Root Diameter | ||||
---|---|---|---|---|---|
Tap root length/cm | Tap root diameter/cm | The first layer lateral root/cm | The second layer lateral root/cm | The first layer lateral root/cm | The second layer lateral root/cm |
20 | 1.33–0.67 | 0.93 | 0.67 | 1–0.33 | 0.53–0.33 |
Loading Times | Load/kN | |
---|---|---|
Bare Slope | Living-Stump Slope | |
1 | 5 | 5 |
2 | 10 | 10 |
… | … | … |
… | … | … |
… | … | … |
32 | 160 | 160 |
33 | 165 | 165 |
Lateral Root Length | Lateral Root Diameter | ||||
---|---|---|---|---|---|
Tap root length/m | Tap root diameter/m | The first layer lateral root/m | The second layer lateral root/m | The first layer lateral root/m | The second layer lateral root/m |
3 | 0.2–0.1 | 1.4 | 1.0 | 0.15–0.05 | 0.08–0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Liu, W.; Yang, H.; Wang, H.; Li, Z. Study on Mechanical Characteristics of Living Stumps and Reinforcement Mechanisms of Slopes. Sustainability 2024, 16, 4294. https://doi.org/10.3390/su16104294
Jiang X, Liu W, Yang H, Wang H, Li Z. Study on Mechanical Characteristics of Living Stumps and Reinforcement Mechanisms of Slopes. Sustainability. 2024; 16(10):4294. https://doi.org/10.3390/su16104294
Chicago/Turabian StyleJiang, Xueliang, Wenjie Liu, Hui Yang, Haodong Wang, and Zhenyu Li. 2024. "Study on Mechanical Characteristics of Living Stumps and Reinforcement Mechanisms of Slopes" Sustainability 16, no. 10: 4294. https://doi.org/10.3390/su16104294
APA StyleJiang, X., Liu, W., Yang, H., Wang, H., & Li, Z. (2024). Study on Mechanical Characteristics of Living Stumps and Reinforcement Mechanisms of Slopes. Sustainability, 16(10), 4294. https://doi.org/10.3390/su16104294