Innovative Design to Control Spartina Alterniflora
<p>The flowchart of the experimental design.</p> "> Figure 2
<p>User needs hierarchy analysis model.</p> "> Figure 3
<p>Common harvest types of agricultural machinery in China.</p> "> Figure 4
<p>Mechanical equipment structural sketches and standards.</p> "> Figure 5
<p>Comprehensive weight ranking.</p> "> Figure 6
<p>House of Quality of Parts and Components of Spartina alterniflora Control Equipment.</p> "> Figure 7
<p>Equipment blade design applications.</p> "> Figure 8
<p>Design and application of spartina alterniflora control machinery.</p> "> Figure 9
<p>Simulation of Spartina alterniflora harvesting schematic diagram.</p> "> Figure 10
<p>Spartina alterniflora recovery and sieve out impurities process.</p> "> Figure 11
<p>Sustainable evaluation system.</p> "> Figure 12
<p>Sustainability evaluation system scores of two schemes.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of User Demand Hierarchy
2.2. Construct a Contrast Judgment Matrix
2.3. Calculate the Weight Value of Design Elements
- Normalize the judgment matrix according to Formula (2):
- Calculate the average value of each row in the normalized judgment matrix according to Formula (3):
2.4. Consistency Check
- where λmax is the maximum eigenvalue, and n is the order of the judgment matrix.
- where CI represents the consistency index of the judgment matrix.
2.5. Comprehensive Weight Ranking
2.6. Comprehensive Weight Ranking
2.7. Analysis of Contradiction Problems Based on TRIZ Theory
3. Results
- Blade Guard: The blade guard’s design aims to address the TRIZ theory’s contradictions between blade protection, blade shape, and power supply components. The blade guard exists as an independent component made of high-carbon steel. After specific treatment, this material offers excellent hardness and elasticity limits, significantly reducing blade wear during non-working conditions and effectively preventing splashing soil during movement.
- Recovery Duct: Considering the fluidity of wetland soil, using a centrifugal impeller and conveyor belt structure ensures efficient recovery and transfer of Spartina alterniflora after the blades cut it, maintaining efficient and smooth recovery operations.
- LiDAR System: Current laser scanners are capable of precisely measuring distances to objects within 250 m, with high accuracy in range measurement. The margin of error can be controlled within 5 cm, allowing for stable operation under various complex environmental conditions [52]. Combining three components—laser, scanning part, and photosensitive chip—with mirror-reflecting light technology, the laser covers the detectable field of view by the LIDAR, enhancing the equipment’s adaptability in complex work environments.
- Solar Panel: Protected by tempered glass, combined with EVA adhesive and high-efficiency polycrystalline silicon solar cells, it provides a stable and environmentally friendly energy supply. The aluminum alloy frame and junction box ensure the system’s stable operation.
- Mechanical Arm: Mainly used to adjust the cutting size of the tool, made of lightweight materials such as aluminum alloy, magnesium alloy, and carbon fiber. Via the flexible connection of rods and joints, it achieves precise size adjustments under remote control, equipped with LiDAR at the front to adapt to different cutting conditions.
- Plowing Structure: The design of a buried plow frame can penetrate about 20 cm into the soil, causing secondary damage to the main stem of Spartina alterniflora and plowing. This design not only improves control effectiveness but also promotes soil structure improvement.
- Charging Port: Allows the equipment to be charged by inserting a charging cable. In addition, it is equipped with an intelligent charging management system, which can automatically determine the charging status and enhance ease of use and safety.
- Marching Structure: Compared to tires, tracked chassis has a larger contact area with the ground, which aids in providing better traction in sticky soils. Tracks distribute the weight of the machine more evenly, reducing the pressure per unit area on the ground and minimizing the risk of sinking into muddy terrain [53]. The tracked movement mode realizes differential steering by controlling the speed difference between the two tracks. This steering method is flexible and easy to control and is suitable for large wetland areas. Both tracks are equipped with protective devices to protect the moving structure, which is easy to clean and reduces energy consumption and maintenance costs.
- Isolation Plate: Separates the moving part of the mechanical equipment from the main body, primarily made of stainless steel. This material has corrosion resistance and high strength, which effectively isolates the moving parts from the main body and ensures stable operation in a heavy load working environment.
- Recovery Box: Used to collect Spartina alterniflora and other debris harvested by the machine.
- Recovery Filter Port: Its density allows for the screening and filtering of other materials, ensuring the purity and reuse value of the recovered material. On the basis of improving resource utilization, the risk of environmental pollution and ecological destruction is reduced.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abeysinghe, N.; Guerrero, A.M.; Rhodes, J.R.; McDonald-Madden, E.; O’Bryan, C.J. How success is evaluated in collaborative invasive species management: A systematic review. J. Environ. Manag. 2023, 348, 119272. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Yin, J.; Wu, J.; Christakos, G. Accurate carbon storage estimation for the salt marsh ecosystem based on Bayesian maximum entropy approach–A case study for the Spartina alterniflora ecosystem. J. Environ. Manag. 2024, 354, 120278. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, H.; Li, Y.; Liu, H. Wintering habitat quality assessment and management strategies of red-crowned crane in Yancheng Yellow Sea Wetland. Wetl. Sci. 2022, 3, 334–340. [Google Scholar]
- Xie, B.; Han, G.; Qiao, P.; Mei, B.; Wang, Q.; Zhou, Y.; Zhang, A.; Guan, B. Effects of mechanical and chemical control on invasive Spartina alterniflora in the Yellow River Delta, China. PeerJ 2019, 7, e7655. [Google Scholar] [CrossRef]
- Peng, H.B.; Shi, J.; Gan, X.; Zhang, J.; Ma, C.; Piersma, T.; Melville, D.S. Efficient removal of Spartina alterniflora with low negative environmental impacts using imazapyr. Front. Mar. Sci. 2022, 9, 1054402. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, S.; Feng, Z.; Liu, G.; Gan, Q.; Peng, S. Use of exotic plants to control Spartina alterniflora invasion and promote mangrove restoration. Sci. Rep. 2015, 5, 12980. [Google Scholar] [CrossRef]
- Li, L.; Jiang, X.; Zhou, Q.; Chen, J.; Zang, Y.; Zhang, Z.; Gao, C.; Tang, X.; Shang, S. Responses of Soil Microbiota to Different Control Methods of the Spartina alterniflora in the Yellow River Delta. Microorganisms 2022, 10, 1122. [Google Scholar] [CrossRef]
- Zhang, D.; Hu, Y.; Liu, M.; Chang, Y.; Yan, X.; Bu, R.; Zhao, D.; Li, Z. Introduction and spread of an exotic plant, Spartina alterniflora, along coastal marshes of China. Wetlands 2017, 37, 1181–1193. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Zhang, Y. Recruitment and herbivory affect spread of invasive Spartina alterniflora in China. Ecology 2014, 95, 1972–1980. [Google Scholar] [CrossRef]
- Wang, G.; Qin, P.; Wan, S.; Zhou, W.; Zai, X.; Yan, D. Ecological control and integral utilization of Spartina alterniflora. Ecol. Eng. 2008, 32, 249–255. [Google Scholar] [CrossRef]
- Syed, S.; Xu, M.; Wang, Z.; Yu, C.; Lian, B. Invasive Spartina alterniflora in controlled cultivation: Environmental implications of converging future technologies. Ecol. Indic. 2021, 130, 108027. [Google Scholar] [CrossRef]
- Zheng, S.; Shao, D.; Asaeda, T.; Sun, T.; Luo, S.; Cheng, M. Modeling the growth dynamics of Spartina alterniflora and the effects of its control measures. Ecol. Eng. 2016, 97, 144–156. [Google Scholar] [CrossRef]
- Zheng, X.; Javed, Z.; Liu, B.; Zhong, S.; Cheng, Z.; Rehman, A.; Du, D.; Li, J. Impact of Spartina alterniflora invasion in coastal wetlands of China: Boon or bane? Biology 2023, 12, 1057. [Google Scholar] [CrossRef]
- Tang, L.; Zhou, Q.S.; Guo, W.; Li, P.; Gao, Y. Importance of high severity in a physical removal treatment for controlling invasive Spartina alterniflora. Ecol. Eng. 2021, 171, 106375. [Google Scholar] [CrossRef]
- Shen, S.; Huang, M.; Tang, C.; Niu, D.; Ma, Q.; Wu, J. Effects of different Spartina alterniflora control measures on plants and macrobenthos. Acta Hydrobiol. Sin. 2014, 2, 279–290. [Google Scholar]
- Wang, Y.; He, Y.; Qiao, P.; Mei, B.; Wang, X.; Han, G.; Xie, B. Control effects of different herbicides on Spartina alterniflora. Ecol. Indic. 2023, 154, 110824. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Xu, Y.; Yuan, L.; Li, W.; Zhu, X.J.; Zhang, L.Q. Emergency control of Spartina alterniflora re-invasion with a chemical method in Chongming Dongtan, China. Water Sci. Eng. 2020, 13, 24–33. [Google Scholar] [CrossRef]
- Patten, K.; O’Casey, C.; Metzger, C. Large-scale chemical control of smooth cordgrass (Spartina alterniflora) in Willapa Bay, WA: Towards control and ecological restoration. Invasive Plant Sci. Manag. 2017, 10, 284–292. [Google Scholar] [CrossRef]
- Jackson, M.V.; Fuller, R.A.; Gan, X.; Li, J.; Mao, D.; Melville, D.S.; Murray, W.; Wang, Z.; Choi, C.Y. Dual threat of tidal flat loss and invasive Spartina alterniflora endanger important shorebird habitat in coastal mainland China. J. Environ. Manag. 2021, 278, 111549. [Google Scholar] [CrossRef]
- Zhao, C.; Li, J.; Zhao, X. Mowing plus shading as an effective method to control the invasive plant Spartina alterniflora. Flora 2019, 257, 151408. [Google Scholar] [CrossRef]
- Manage, J.A.P. Mechanical and chemical control of the invasive cordgrass Spartina densiflora and native plant community responses in an estuarine salt marsh. J. Aquat. Plant Manag. 2012, 50, 106–111. [Google Scholar]
- Shin, W.; Kim, J.; Song, Y.; Kang, H.; Byun, C. Soil tillage effect on the control of invasive Spartina anglica in a coastal wetland. Wetl. Ecol. Manag. 2024, 32, 1–12. [Google Scholar] [CrossRef]
- Devanathan, C.; DineshKumar, P.T.; Selvaramkumar, A.; Giri, R.; Dhandapani, S. Design and development of cost effective agricultural weeder. Mater. Today Proc. 2021, 47, 6590–6593. [Google Scholar] [CrossRef]
- Saha, K.K.; Hossain, A.; Hoque, M.A.; Jahan, M.A.H.S.; Ahmed, S.; Timsina, J. Development and performance evaluation of a two-wheeled power-tiller multi-row weeder. J. Biosyst. Eng. 2021, 46, 36–47. [Google Scholar] [CrossRef]
- Neira-Rodado, D.; Ortíz-Barrios, M.; De la Hoz-Escorcia, S.; Paggetti, C.; Noffrini, L.; Fratea, N. Smart product design process through the implementation of a fuzzy Kano-AHP-DEMATEL-QFD approach. Appl. Sci. 2020, 10, 1792. [Google Scholar] [CrossRef]
- Jiao, J. Demand Analysis of Emergency Rescue Engineering Machinery Based on AHP and QFD. IOP Conf. Ser. Earth Environ. Sci. 2021, 791, 012065. [Google Scholar] [CrossRef]
- Li, J.; Peng, X.; Li, C.; Luo, Q.; Peng, S.; Tang, H.; Tang, R. Renovation of Traditional Residential Buildings in Lijiang Based on AHP-QFD Methodology: A Case Study of the Wenzhi Village. Buildings 2023, 13, 2055. [Google Scholar] [CrossRef]
- Li, X.; Li, H. Age-appropriate design of domestic intelligent medical products: An example of smart blood glucose detector for the elderly with AHP-QFD Joint KE. Heliyon 2024, 10, 27387. [Google Scholar] [CrossRef]
- Kim, T.; Lim, H.; Cho, K. Conceptual robot design for the automated layout of building structures by integrating QFD and TRIZ. Int. J. Adv. Manuf. Technol. 2022, 120, 1793–1804. [Google Scholar] [CrossRef]
- Lee, C.K.M.; Tsang, Y.P.; Chong, W.W.; Au, Y.S.; Liang, J.Y. Achieving eco-innovative smart glass design with the integration of opinion mining, QFD and TRIZ. Sci. Rep. 2024, 14, 9822. [Google Scholar] [CrossRef]
- Rong, H.; Liu, W.; Li, J.; Zhou, Z. Product innovation design process combined Kano and TRIZ with AD: Case study. PLoS ONE 2024, 19, 0296980. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, Y.; Wang, P.; Zhou, Z.; Wang, Y.; Zhou, B. Advances in Invasive Ecology of Exotic Spartina alterniflora. Trans. Oceanol. Limnol. 2023, 03, 155–163. [Google Scholar]
- Dai, L.; Liu, H.; Wang, G.; Wang, C.; Guo, Z.; Zhou, Y.; Li, Y. Modelling the effects of Spartina alterniflora invasion on the landscape succession of Yancheng coastal natural wetlands, China. PeerJ 2020, 8, e10400. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Li, Y.; Liu, L.; Xie, F.; Lou, C.; Zhang, H. Effects of Spartina alterniflora invasion on quality of the red-crowned crane (Grus japonensis) wintering habitat. Environ. Sci. Pollut. Res. 2019, 26, 21546–21555. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, S.; Zhang, X.; Wang, W.; Li, F.; Dong, L.; Kong, F.; Xi, M. Potential ecological impacts of physical control on Spartina alterniflora in coastal wetland: Migration and transformation of nutrients and the response of bacterial community structure. J. Clean. Prod. 2023, 398, 136556. [Google Scholar] [CrossRef]
- Sun, H.; Yang, Q.; Wu, Y. Evaluation and Design of Reusable Takeaway Containers Based on the AHP–FCE Model. Sustainability 2023, 15, 2191. [Google Scholar] [CrossRef]
- Yanwen, W.; Peng, C.; Chen, F. Security Assessment of Coal Mine Power Grid Voltage Based on an Improved AHP-FCE. Math. Probl. Eng. 2022, 2022, 5256285. [Google Scholar] [CrossRef]
- Luo, F.; Dai, J.; Chen, Z.; Zhou, G.; Zeng, J.; Zhang, F. Dynamic monitoring and driving force analysis of salt marsh vegetation distribution. J. Hohai Univ. (Nat. Sci.) 2024, 3, 1–12. [Google Scholar]
- Zhang, H.B.; Liu, Y.Q.; Xu, Y.; Han, S.; Wang, J. Impacts of Spartina alterniflora expansion on landscape pattern and habitat quality: A case study in Yancheng Coastal wetland, China. Appl. Ecol. Environ. Res. 2020, 18, 4669. [Google Scholar] [CrossRef]
- Wongvilaisakul, W.; Netinant, P.; Rukhiran, M. Dynamic multi-criteria decision making of graduate admission recommender system: AHP and fuzzy AHP approaches. Sustainability 2023, 15, 9758. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Maidin, N.A.; Rahman, M.H.A.; Osman, M.H. Conceptual design selection of manual wheelchair for elderly by analytical hierarchy process (AHP) method: A case study. Int. J. Appl. Eng. Res. 2017, 12, 6710–6719. [Google Scholar]
- Liu, W.; Huang, Y.; Sun, Y.; Yu, C. Research on design elements of household medical products for rhinitis based on AHP. Math. Biosci. Eng. MBE 2023, 20, 9003–9017. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Luh, D.; Hu, L.; Liu, J.; Chen, H. Sustainable Design Strategy of Regional Revitalization Based on AHP–FCE Analysis: A Case Study of Qianfeng in Guangzhou. Buildings 2023, 13, 2553. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Sarkar, B.; Mukherjee, S.K. Integrating AHP with QFD for robot selection under requirement perspective. Int. J. Prod. Res. 2005, 43, 3671–3685. [Google Scholar] [CrossRef]
- Dai, J.; Blackhurst, J. A four-phase AHP–QFD approach for supplier assessment: A sustainability perspective. Int. J. Prod. Res. 2012, 50, 5474–5490. [Google Scholar] [CrossRef]
- Hridoy, R.M.; Parvez, M.S.; Mohsin, N. Joining methods of Analytic Hierarchy Process (AHP), Kano Model and Quality Function Deployment (QFD) to improve the tractor’s seat design for tractor drivers in Bangladesh. Am. J. Ind. Bus. Manag. 2020, 10, 1073. [Google Scholar] [CrossRef]
- Villanueva, P.; Bona, S.; Lostado-Lorza, R.; Veiga, F. Morphological Design of a Bicycle Propulsion Component Using the Hierarchical Analysis Process (AHP). Appl. Sci. 2023, 13, 7792. [Google Scholar] [CrossRef]
- Yao, W.; Wang, C.; Pang, J.; Liu, Y.; Zhang, J. Research and development of fully enclosed wire-shell support structure technology for deep soft rock roadway based on TRIZ theory. Sci. Rep. 2024, 14, 3279. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Z.; Chen, H.; Li, S.; Wu, H.; Gao, X.; Du, L.; Song, L. Corrosion behavior of corrosion-resistant spring steel used in high speed railway. Appl. Sci. 2021, 11, 8668. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L. An experimental study on physical controls of an exotic plant Spartina alterniflora in Shanghai, China. Ecol. Eng. 2008, 32, 11–21. [Google Scholar] [CrossRef]
- Xie, B.; Han, G. Control of invasive plant Spartina alterniflora: Concept, technology and practice. Bull. Chin. Acad. Sci. (Chin. Version) 2023, 38, 1924–1938. [Google Scholar]
- Hu, T.; Sun, X.; Su, Y.; Guan, H.; Sun, Q.; Kelly, M.; Guo, Q. Development and performance evaluation of a very low-cost UAV-LiDAR system for forestry applications. Remote Sens. 2020, 13, 77. [Google Scholar] [CrossRef]
- Paul, A.; Machavaram, R. Design of an adjustable chassis for a track type combine harvester. Cogent Eng. 2024, 11, 2353811. [Google Scholar] [CrossRef]
- Van der Velden, N.M.; Kuusk, K.; Köhler, A.R. Life cycle assessment and eco-design of smart textiles: The importance of material selection demonstrated through e-textile product redesign. Mater. Des. 2015, 84, 313–324. [Google Scholar] [CrossRef]
- Pacana, A.; Siwiec, D.; Bednárová, L.; Petrovský, J. Improving the Process of Product Design in a Phase of Life Cycle Assessment (LCA). Processes 2023, 11, 2579. [Google Scholar] [CrossRef]
Indicator Scale | Implication | Scale Value Description |
---|---|---|
1 | Equally important | Indicator a and indicator b are equally important |
3 | Slightly important | Indicator a is marginally more important than indicator b |
5 | Significantly important | Indicator a is significantly more important than indicator b |
7 | Very important | Indicator a is very important compared to indicator b |
9 | Absolutely important | Indicator a is more important than indicator b |
2, 4, 6, 8 | Inversion comparison | Take the middle part |
X | A | B | C | D | WX |
---|---|---|---|---|---|
A | 1 | 0.381 | 1.083 | 1.306 | 0.177 |
B | 2.628 | 1 | 3.417 | 4.083 | 0.507 |
C | 0.923 | 0.293 | 1 | 3.250 | 0.209 |
D | 0.766 | 0.245 | 0.308 | 1 | 0.107 |
A | A1 | A2 | WA |
---|---|---|---|
A1 | 1 | 0.529 | 0.346 |
A2 | 1.889 | 1 | 0.654 |
B | B1 | B2 | B3 | B4 | B5 | WB |
---|---|---|---|---|---|---|
B1 | 1 | 3.500 | 0.537 | 2.500 | 5.167 | 0.274 |
B2 | 0.286 | 1 | 0.215 | 0.303 | 2.500 | 0.086 |
B3 | 1.861 | 4.641 | 1 | 4.333 | 6.167 | 0.436 |
B4 | 0.400 | 3.303 | 0.231 | 1 | 3.333 | 0.155 |
B5 | 0.194 | 0.400 | 0.162 | 0.300 | 1 | 0.049 |
C | C1 | C2 | C3 | C4 | WC |
---|---|---|---|---|---|
C1 | 1 | 2.333 | 0.547 | 4.000 | 0.295 |
C2 | 0.429 | 1 | 0.265 | 3.333 | 0.161 |
C3 | 1.827 | 3.767 | 1 | 4.667 | 0.471 |
C4 | 0.250 | 0.300 | 0.214 | 1 | 0.073 |
D | D1 | D2 | D3 | WD |
---|---|---|---|---|
D1 | 1 | 3.333 | 2.500 | 0.590 |
D2 | 0.300 | 1 | 0.889 | 0.187 |
D3 | 0.400 | 1.125 | 1 | 0.223 |
Matrix Order | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.52 | 0.89 | 1.12 | 1.26 | 1.36 | 1.41 | 1.46 | 1.49 |
Coherence Indicators | X | A | B | C | D |
---|---|---|---|---|---|
λmax | 4.133 | 2 | 5.200 | 4.106 | 3.003 |
CI | 0.044 | 0 | 0.050 | 0.035 | 0.002 |
RI | 0.890 | \ | 1.120 | 0.890 | 0.520 |
CR | 0.050 | 0.045 | 0.040 | 0.003 |
Element Layer | Weight | Comprehensive Weight | Rank |
---|---|---|---|
A1 | 0.346 | 0.061 | 8 |
A2 | 0.654 | 0.116 | 3 |
B1 | 0.274 | 0.139 | 2 |
B2 | 0.086 | 0.044 | 9 |
B3 | 0.436 | 0.221 | 1 |
B4 | 0.155 | 0.078 | 5 |
B5 | 0.049 | 0.025 | 11 |
C1 | 0.295 | 0.062 | 7 |
C2 | 0.161 | 0.034 | 10 |
C3 | 0.471 | 0.098 | 4 |
C4 | 0.073 | 0.015 | 14 |
D1 | 0.590 | 0.063 | 6 |
D2 | 0.187 | 0.020 | 13 |
D3 | 0.223 | 0.024 | 12 |
Conflict Number | Conflict | Type of Contradiction | Separation Mode | Inventive Principle |
---|---|---|---|---|
01 | Easy control-Remote control | Physical Contradiction | space separation | 1, 2, 3, 4, 7, 13, 17, 24, 26, 30 |
02 | Recovery of articulated parts-Transmission unit | System level separation | 12, 28, 31, 32, 35, 36, 38, 39, 40 |
Conflict Number | Conflict | Type of Contradiction | Improved Parameters | Deteriorating Parameter | Inventive Principle |
---|---|---|---|---|---|
01 | Tool forms-Blade protection | Technical Contradiction | No. 36 | No. 27 | 1, 2, 3, 4, 7, 13, 17, 24, 26, 30 |
02 | Blade protection-Power supply components | No. 5 | No. 22 | 12, 28, 31, 32, 35, 36, 38, 39, 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Wei, D.; Zhang, X.; Chen, Y. Innovative Design to Control Spartina Alterniflora. Sustainability 2024, 16, 8256. https://doi.org/10.3390/su16188256
Xu J, Wei D, Zhang X, Chen Y. Innovative Design to Control Spartina Alterniflora. Sustainability. 2024; 16(18):8256. https://doi.org/10.3390/su16188256
Chicago/Turabian StyleXu, Jinyang, Dapeng Wei, Xuedong Zhang, and Yanming Chen. 2024. "Innovative Design to Control Spartina Alterniflora" Sustainability 16, no. 18: 8256. https://doi.org/10.3390/su16188256
APA StyleXu, J., Wei, D., Zhang, X., & Chen, Y. (2024). Innovative Design to Control Spartina Alterniflora. Sustainability, 16(18), 8256. https://doi.org/10.3390/su16188256