Identification of Vegetation Surfaces and Volumes by Height Levels in Reservoir Deltas Using UAS Techniques—Case Study at Gilău Reservoir, Transylvania, Romania
<p>General map of the hydrotechnical system of the Upper Someșul Mic (sources, [<a href="#B58-sustainability-16-00648" class="html-bibr">58</a>,<a href="#B59-sustainability-16-00648" class="html-bibr">59</a>]. Upper inset, the Someșul Rece Delta at the level of 2008; lower inset, its location within the Transylvania and Romania territories, and Romania’s position within the European continent [<a href="#B60-sustainability-16-00648" class="html-bibr">60</a>].</p> "> Figure 2
<p>Components of the used UAS equipment: Phantom 4 Pro drone and control panel.</p> "> Figure 3
<p>Image residuals for FC 330 (3.61 mm).</p> "> Figure 4
<p>(<b>a</b>) Mission route; (<b>b</b>) camera locations and image overlap.</p> "> Figure 5
<p>Camera locations and error estimates (Z error is represented by ellipse color. X and Y errors are represented by ellipse shape. Estimated camera locations are marked with a black dot).</p> "> Figure 6
<p>(<b>a</b>) Simple point cloud; (<b>b</b>) densified point cloud.</p> "> Figure 7
<p>Densified point cloud classification.</p> "> Figure 8
<p>(<b>a</b>) Digital Surface Model; (<b>b</b>) Digital Terrain Model with 1 m equidistance of contours.</p> "> Figure 9
<p>(<b>a</b>) Orthophotoplan of the study area (0.047 m/pix); (<b>b</b>) 3D raster “sandwich” used for Cartesian analysis of vegetation.</p> "> Figure 10
<p>(<b>a</b>) NDVI index of study area; (<b>b</b>) confidence map (%) of derived model.</p> "> Figure 11
<p>Detailed distribution of overlapping profiles in the area of interest.</p> "> Figure 12
<p>(<b>a</b>) Terrain surface; (<b>b</b>) vegetation surface cropped to the AOI and used for volume calculation.</p> "> Figure 13
<p>The percentage of the vegetation area and volume with altitudinal differences in the topographic surface of the Gilău Lake delta, according to the amounts from <a href="#sustainability-16-00648-t004" class="html-table">Table 4</a>.</p> ">
Abstract
:1. Introduction
- -
- Products providing 2D planimetric information (x, y) (example: orthophotoplan, etc.).
- -
- Products providing 3D altimetric information (x, y, z) (DEM, DSM, 3D model, etc.).
- -
- They are hard-to-reach areas (sometimes inaccessible);
- -
- They are very dynamic areas, as from the point of view of the substrate they are the result of the continuous sedimentation–erosion game.
The Study Area
2. Materials and Methods
3. Results
- -
- High-resolution orthophoto plan (2D);
- -
- Point cloud (pseudo-LIDAR) (3D).
- -
- Points that define the topographic surface (DTM—Digital Terrain Model) (3D);
- -
- Points that define the surface occupied by the elements above the topographic one (including vegetation and anthropogenic objectives) (DSM—Digital Surface Model) (3D).
- -
- Coplanarity condition;
- -
- Relative orientation;
- -
- Absolute orientation.
4. Discussion
- -
- 3D reconstruction process based on UAV technology (drone) and the interpolation algorithm ‘‘Daisy’’ is cheap, relying on open-source solutions;
- -
- The accuracy of 3D reconstruction (5 cm) is much higher than traditional photogrammetric solutions;
- -
- The final product (DEM, DSM, orthophotoplan, false NDVI, vegetation grid, etc.) can be georeferenced and integrated into any GIS or CAD application;
- -
- This process allows an accurate qualitative and quantitative approach (distance, area, volume);
- -
- The procedure is of a non-invasive nature and is applicable in areas difficult to reach or inaccessible using traditional technology.
- -
- Flights cannot be executed in conditions of winds over 60 km/h and in unfavorable light conditions; for this study, the flight was executed in calm weather conditions;
- -
- The flight autonomy is relatively low on the battery unit (under 40 min) to avoid system collapse and sustaining significant damage; instead, more batteries can be bought to change them every 30 min;
- -
- A low environment temperature is unfavorable, resulting in faster battery consumption;
- -
- Significant hardware resources are required in processing the data: in this case, a computer system including but not limited to an Intel i7/AMD Ryzen processor, 32 GB RAM, a video card of 16 GB, and a 2 TB SSD.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalamagkidis, K.; Valavanis, K.P.; Piegl, L.A. On unmanned aircraft systems issues, challenges and operational restrictions preventing integration into the National Airspace System. Prog. Aerosp. Sci. 2008, 44, 503–519. [Google Scholar] [CrossRef]
- Barmpounakis, E.N.; Yannis, G.; Golias, J. Unmanned Aerial Aircraft Systems for transportation engineering: Current practice and future challenges. Int. J. Transp. Sci. Technol. 2016, 5, 111–122. [Google Scholar] [CrossRef]
- McFadyen, A.; Mejias, L. A survey of autonomous vision-based See and Avoid for Unmanned Aircraft Systems. Prog. Aerosp. Sci. 2016, 80, 1–17. [Google Scholar] [CrossRef]
- Washington, A.; Clothier, R.A.; Silva, J.R. A review of unmanned aircraft system ground risk models. Prog. Aerosp. Sci. 2017, 95, 24–44. [Google Scholar] [CrossRef]
- Hackl, J.; Adey, B.T.; Woźniak, M.; Schümperlin, O. Use of Unmanned Aerial Vehicle Photogrammetry to Obtain Topographical Information to Improve Bridge Risk Assessment. J. Infrastruct. Syst. 2018, 24. [Google Scholar] [CrossRef]
- Hovrtek. An A-Z Glossary of Drone Terminology. 2019. Available online: https://www.hovrtek.com/drone-operations/drone-terminology/ (accessed on 10 August 2020).
- Darvishpoor, S.; Roshanian, J.; Raissi, A.; Hassanalian, M. Configurations, flight mechanisms, and applications of unmanned aerial systems: A review. Prog. Aerosp. Sci. 2020, 121, 100694. [Google Scholar] [CrossRef]
- Serban, G.; Rus, I.A.; Vele, D.; Breţcan, P.; Alexe, M.; Petrea, D. Flood-prone area delimitation using UAV technology, in the areas hard-to-reach for classic aircrafts: Case study in the north-east of Apuseni Mountains, Transylvania. Nat. Hazards 2016, 82, 1817–1832. [Google Scholar] [CrossRef]
- Șerban, G.; Rus, I.A.; Niţoaia, A.; Vele, D. Preliminary results in assessing flood-prone areas using UAS System within the Ozana River Upper Basin (the Eastern Carpathians). Revista Forum Geografic 2017, XVI, 102–112. [Google Scholar] [CrossRef]
- Coveney, S.; Roberts, K.B. Lightweight UAV digital elevation models and orthoimagery for environmental applications: Data accuracy evaluation and potential for river flood risk modelling. Int. J. Remote Sens. 2017, 38, 3159–3180. [Google Scholar] [CrossRef]
- Govedarica, M.; Jakovljević, G.; Álvarez-Taboada, F. Flood risk assessment based on LiDAR and UAV points clouds and DEM. In Proceedings of the SPIE 10783, Remote Sensing for Agriculture, Ecosystems, and Hydrology XX, 107830B, Berlin, Germany, 10 October 2018. [Google Scholar] [CrossRef]
- Dyer, J.L.; Moorhead, R.J.; Hathcock, L. Identification and Analysis of Microscale Hydrologic Flood Impacts Using Unmanned Aerial Systems. Remote Sens. 2020, 12, 1549. [Google Scholar] [CrossRef]
- Kerle, N.; Heuel, S.; Pfeifer, N. Real-Time Data Collection and Information Generation using Airborne Sensors. In Geospatial Information Technology for Emergency Response; Li, J., Zlatanova, S., Eds.; ISPRS Book series; 6; Taylor & Francis: Leiden, The Netherlands, 2008; pp. 43–74. Available online: https://ezproxy2.utwente.nl/login?url=https://webapps.itc.utwente.nl/library/2008/chap/kerle_rea.pdf (accessed on 3 May 2021).
- Choi, K.; Lee, I.; Hong, J.; Oh, T.; Shin, S. Developing a UAV-based Rapid Mapping System for Emergency Response. In Proceedings of SPIE; SPIE: Bellingham, WA, USA, 2009. [Google Scholar] [CrossRef]
- Roeoesli, C. Processing of UAV-Images: In Samoilov Island; Institute of Geodesy and Photogrammetry, ETH Zurich: Zürich, Switzerland, 2009; p. 46. [Google Scholar]
- Remondino, F.; El-Hakim, S.F.; Girardi, S.; Rizzi, A.; Benedetti, S.; Gonzo, L. 3D Virtual reconstruction and visualization of complex architectures: The 3D-ARCH project. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2009, 38, 1–9. [Google Scholar] [CrossRef]
- Restás, Á. Drone Applications for Supporting Disaster Management. World J. Eng. Technol. 2015, 3, 316–321. [Google Scholar] [CrossRef]
- Giordan, D.; Hayakawa, Y.S.; Nex, F.; Remondino, F.; Tarolli, P. Review article: The use of remotely piloted aircraft systems (RPASs) for natural hazards monitoring and management. Nat. Hazards Earth Syst. Sci. 2017, 18, 1079–1096. [Google Scholar] [CrossRef]
- Hashemi-Beni, L.; Jones, J.A.; Thompson, G.M.; Johnson, C.; Gebrehiwot, A. Challenges and Opportunities for UAV-Based Digital Elevation Model Generation for Flood-Risk Management: A Case of Princeville, North Carolina. Sensors 2018, 18, 3843. [Google Scholar] [CrossRef] [PubMed]
- Langhammer, J.; Vacková, T. Detection and Mapping of the Geomorphic Effects of Flooding Using UAV Photogrammetry. Pure Appl. Geophys. 2018, 175, 3223–3245. [Google Scholar] [CrossRef]
- Yalcin, E. Two-dimensional hydrodynamic modelling for urban flood risk assessment using unmanned aerial vehicle imagery: A case study of Kirsehir, Turkey. J. Flood Risk Manag. 2019, 12, e12499. [Google Scholar] [CrossRef]
- Villanueva, J.L. Contribuciones Metodológicas Para la Obtención de Información Altimétrica Requerida en la Evaluación Local de Amenazas por Inundaciones a Partir de Nuevas Tecnologías Geoespaciales. Ph.D. Thesis, E.T.S.I. de Minas y Energía (UPM), Madrid, Spain, 2020. [Google Scholar] [CrossRef]
- Salmoral, G.; Casado, M.R.; Muthusamy, M.; Butler, D.; Menon, P.P.; Leinster, P. Guidelines for the Use of Unmanned Aerial Systems in Flood Emergency Response. Water 2020, 12, 521. [Google Scholar] [CrossRef]
- Dunea, D.; Bretcan, P.; Purcoi, L.; Tanislav, D.; Serban, G.; Neagoe, A.; Iordache, V.; Iordache, Ș. Effects of riparian vegetation on evapotranspiration processes and water quality of small plain streams. Ecohydrol. Hydrobiol. 2021, 21, 629–640. [Google Scholar] [CrossRef]
- Hervouet, A.; Dunford, R.G.; Piégay, H.; Belletti, B.; Trémélo, M. Analysis of Post-flood Recruitment Patterns in Braided-Channel Rivers at Multiple Scales Based on an Image Series Collected by Unmanned Aerial Vehicles, Ultra-light Aerial Vehicles, and Satellites. Gisci. Remote Sens. 2011, 48, 50–73. [Google Scholar] [CrossRef]
- Taubenböck, H.; Wurm, M.; Netzband, M.; Zwenzner, H.; Roth, A.; Rahman, A.; Dech, S. Flood risks in urbanized areas—Multi-sensoral approaches using remotely sensed data for risk assessment. Nat. Hazards Earth Syst. Sci. 2011, 11, 431–444. [Google Scholar] [CrossRef]
- Abdelkader, M.; Shaqura, M.; Claudel, C.; Gueaieb, W. A UAV Based System for Real Time Flash Flood Monitoring in Desert Environments using Lagrangian Microsensors. In Proceedings of the 2013 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 28–31 May 2013; pp. 25–34. [Google Scholar] [CrossRef]
- Abdelkader, M.; Shaqura, M.; Ghommem, M.; Collier, N.; Calo, V.; Claudel, C. Optimal Multi-Agent Path Planning for Fast Inverse Modeling in UAV-Based Flood Sensing Applications. In Proceedings of the 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014. [Google Scholar] [CrossRef]
- Sanders, R.; Shaw, F.; MacKay, H.; Galy, H.; Foote, M. National flood modelling for insurance purposes: Using IFSAR for flood risk estimation in Europe. Hydrol. Earth Syst. Sci. 2005, 9, 449–456. [Google Scholar] [CrossRef]
- Pappenberger, F.; Matgen, P.; Beven, K.; Henry, J.; Pfister, L.; De Fraipont, P. Influence of uncertain boundary conditions and model structure on flood inundation predictions. Adv. Water Resour. 2006, 29, 1430–1449. [Google Scholar] [CrossRef]
- Chevereşan, B.A. Acurateţea MNT Pentru Definirea Zonelor Inundabile [DTM Accuracy for Defining Floodplains]. Ph.D. Dissertation, Universitatea Tehnica de Constructii Bucuresti, Facultatea de Hidrotehnica, București, Romania, 2011. Available online: https://www.scribd.com/doc/254184909/Rez-Cheveresan-Bogdan-LIDAR-pdf (accessed on 3 May 2021). (In Romanian).
- Madjid, M.; Vandeginste, V.; Hampson, G.; Jordan, C.; Booth, A.W. Drones in carbonate geology: Opportunities and challenges, and application in diagenetic dolomite geobody mapping. Mar. Pet. Geol. 2018, 91, 723–734. [Google Scholar] [CrossRef]
- Zekkos, D.; Greenwood, W.; Lynch, J.P.; Manousakis, J.; Athanasopoulos-Zekkos, A.; Clark, M.K.; Cook, K.H.; Saroglou, C. Lessons Learned from the Application of UAV-Enabled Structure-From-Motion Photogrammetry in Geotechnical Engineering. ISSMGE Int. J. Geoengin. Case Hist. 2018, 4, 254–274. [Google Scholar] [CrossRef]
- Nnaji, C.; Okpala, I.; Awolusi, I. Wearable Sensing Devices: Potential Impact & Current Use for Incident Prevention. OnePetro 2020, 65, 16–24. Available online: https://onepetro.org/PS/article-abstract/65/04/16/33391/Wearable-Sensing-Devices-Potential-Impact-amp?redirectedFrom=fulltext (accessed on 3 May 2021).
- Sugiura, R.; Noguchi, N.; Ishii, K. Remote-sensing Technology for Vegetation Monitoring using an Unmanned Helicopter. Biosyst. Eng. 2005, 90, 369–379. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Hively, W.D.; Fujikawa, S.J.; Linden, D.S.; Daughtry, C.S.T.; McCarty, G.W. Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring. Remote Sens. 2010, 2, 290–305. [Google Scholar] [CrossRef]
- Meneses, N.; Brunner, F.; Baier, S.; Geist, J.; Schneider, T. Quantification of Extent, Density, and Status of Aquatic Reed Beds Using Point Clouds Derived from UAV–RGB Imagery. Remote Sens. 2018, 10, 1869. [Google Scholar] [CrossRef]
- Fake, M. Unmanned Aerial System Derived Multi-Spectral Imagery for the Monitoring of Coastal Dune Plant Communities. Master’s Thesis, Lincoln University, Lincoln, New Zealand, 2019. [Google Scholar]
- Lin, J.; Zhou, X.; Deng, S.; Du, X.; Wang, M.; Xinjuan, L.I. Inspecting Unattended Irrigation Canals of Dujiangyan in Mountainous Area with UAV Remote Sensing Technology. In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019. [Google Scholar] [CrossRef]
- O’Hara, R. The Application of Earth Observation for Mapping Soil Saturation and the Extent and Distribution of Artificial Drainage on Irish Farms. Ph.D. Dissertation, National University of Ireland Maynooth, Maynooth, Ireland, 2019. Available online: https://mural.maynoothuniversity.ie/11883/1/Rob%20O%27Hara%20PhD%202019.pdf (accessed on 3 May 2021).
- Taravat, A.; Wagner, M.; Oppelt, N. Automatic Grassland Cutting Status Detection in the Context of Spatiotemporal Sentinel-1 Imagery Analysis and Artificial Neural Networks. Remote Sens. 2019, 11, 711. [Google Scholar] [CrossRef]
- Wagner, M.; Oppelt, N. Extracting Agricultural Fields from Remote Sensing Imagery Using Graph-Based Growing Contours. Remote Sens. 2020, 12, 1205. [Google Scholar] [CrossRef]
- Watts, A.C.; Ambrosia, V.G.; Hinkley, E. Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use. Remote Sens. 2012, 4, 1671–1692. [Google Scholar] [CrossRef]
- Pajares, G. Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs). Photogramm. Eng. Remote Sens. 2015, 81, 281–330. [Google Scholar] [CrossRef]
- Meneses, N.; Baier, S.; Reidelstürz, P.; Geist, J.; Schneider, T. Modelling heights of sparse aquatic reed (Phragmites australis) using Structure from Motion point clouds derived from Rotary- and Fixed-Wing Unmanned Aerial Vehicle (UAV) data. Limnologica 2018, 72, 10–21. [Google Scholar] [CrossRef]
- Liu, T.; Abd-Elrahman, A. Multi-view object-based classification of wetland land covers using unmanned aircraft system images. Remote Sens. Environ. 2018, 216, 122–138. [Google Scholar] [CrossRef]
- Fritz, C.; Dörnhöfer, K.; Schneider, T.; Geist, J.; Oppelt, N. Sentinel-2 for mapping the spatio-temporal development of submerged aquatic vegetation at Lake Starnberg (Germany). J. Limnol. 2019, 78, 71–91. [Google Scholar] [CrossRef]
- Green, D.; Hagon, J.J.; Gómez, C.A.; Gregory, B.J. Using Low-Cost UAVs for Environmental Monitoring, Mapping, and Modelling: Examples from the Coastal Zone. In Elsevier eBooks; Academic Press: Cambridge, MA, USA, 2019; pp. 465–501. [Google Scholar] [CrossRef]
- Alvarez-Vanhard, E.; Houet, T.; Mony, C.; Lecoq, L.; Corpetti, T. Can UAVs fill the gap between in situ surveys and satellites for habitat mapping? Remote Sens. Environ. 2020, 243, 111780. [Google Scholar] [CrossRef]
- Wang, D.; Song, Q.; Liao, X.; Ye, H.; Shao, Q.; Fan, J.; Cong, N.; Xin, X.; Yue, H.; Zhang, H. Integrating satellite and unmanned aircraft system (UAS) imagery to model livestock population dynamics in the Longbao Wetland National Nature Reserve, China. Sci. Total Environ. 2020, 746, 140327. [Google Scholar] [CrossRef]
- Wikantika, K. Three-Dimensional City Building Modellingwith Lidar Data (Case Study: Ciwaruga, Bandung). In Proceedings of the Asian Conference on Remote Sensing, Kuala Lumpur, Malaysia, 15–19 October 2018. [Google Scholar] [CrossRef]
- Mazzoleni, M.; Paron, P.; Reali, A.; Juizo, D.; Manane, J.; Brandimarte, L. Testing UAV-derived topography for hydraulic modelling in a tropical environment. Nat. Hazards 2020, 103, 139–163. [Google Scholar] [CrossRef]
- Zhang, W.; Ning, Y.; Suo, C. A Method Based on Multi-Sensor Data Fusion for UAV Safety Distance Diagnosis. Electronics 2019, 8, 1467. [Google Scholar] [CrossRef]
- Jayson-Quashigah, P.; Addo, K.A.; Amisigo, B.; Wiafe, G. Assessment of short-term beach sediment change in the Volta Delta coast in Ghana using data from Unmanned Aerial Vehicles (Drone). Ocean Coast. Manag. 2019, 182, 104952. [Google Scholar] [CrossRef]
- Lu, J.; Wang, H.; Qin, S.; Cao, L.; Pu, R.; Li, G.; Sun, J. Estimation of aboveground biomass of Robinia pseudoacacia forest in the Yellow River Delta based on UAV and Backpack LiDAR point clouds. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102014. [Google Scholar] [CrossRef]
- Batuca, D.G.; Jordaan, J.J.M. Silting and Desilting of Reservoirs, 1st ed.; CRC Press: Boca Raton, FL, USA, 2000; 368p. [Google Scholar]
- Şerban, G.H. Lacurile de Acumulare din Bazinul Superior al Someşului Mic. Studiu Hidrogeografic. In The Storage Lakes in the Upper Basin of Someşul Mic. Hydrogeographic Study; Presa Universitară Clujeană: Cluj-Napoca, Romania, 2007; 236p. [Google Scholar]
- Digital Elevation Model Over Europe (EU-DEM). 2017. Available online: https://www.eea.europa.eu/data-and-maps/data/eu-dem (accessed on 5 May 2021).
- Military Topographic Direction. Topographic Map of Romania, 1:25000; Military Topographic Direction: Bucharest, Romania, 1982. (In Romanian) [Google Scholar]
- Romania in Europe. Directorate—General European Affairs, Schengen and International Relations. 2020. Available online: http://www.schengen.mai.gov.ro/Foto/RomaniaInEurope.png (accessed on 4 May 2021).
- Hassanalian, M.; Abdelkefi, A. Classifications, applications, and design challenges of drones: A review. Prog. Aerosp. Sci. 2017, 91, 99–131. [Google Scholar] [CrossRef]
- DJI. 2020. Available online: https://www.dji.com/Phantom-4 (accessed on 3 August 2020).
- Han, Y.; Jung, S.; Kwon, O. How to utilize vegetation survey using drone image and image analysis software. J. Ecol. Environ. 2017, 41, 18. [Google Scholar] [CrossRef]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.K.; Rosette, J. Structure from Motion Photogrammetry in Forestry: A Review. Curr. For. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef]
- Zhao, D.; Arshad, M.; Wang, J.; Triantafilis, J. Soil exchangeable cations estimation using Vis-NIR spectroscopy in different depths: Effects of multiple calibration models and spiking. Comput. Electron. Agric. 2021, 182, 105990. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, J.; Zhao, X.; Triantafilis, J. Clay content mapping and uncertainty estimation using weighted model averaging. CATENA 2022, 209, 105791. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, X.; Jiang, M.; Tong, S.; Lu, X. Spatiotemporal change of aboveground biomass and its response to climate change in marshes of the Tibetan Plateau. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102385. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Henderson, M.; Wang, L.; Jiang, M.; Lu, X. Vegetation Greening, Extended Growing Seasons, and Temperature Feedbacks in Warming Temperate Grasslands of China. J. Clim. 2022, 35, 5103–5117. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Liu, L.; Wang, Z.; Nie, Y.; Rai, M.K. A novel Landsat-based automated mapping of marsh wetland in the headwaters of the Brahmaputra, Ganges and Indus Rivers, southwestern Tibetan Plateau. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102481. [Google Scholar] [CrossRef]
- Luo, S.; Wang, C.; Xi, X.; Nie, S.; Fan, X.; Chen, H.; Ma, D.; Liu, J.; Zou, J.; Lin, Y.; et al. Estimating forest aboveground biomass using small-footprint full-waveform airborne LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101922. [Google Scholar] [CrossRef]
- Liu, K.; Shen, X.; Cao, L.; Wang, G.; Cao, F. Estimating forest structural attributes using UAV-LiDAR data in Ginkgo plantations. ISPRS J. Photogramm. Remote Sens. 2018, 146, 465–482. [Google Scholar] [CrossRef]
P2 | P1 | K3 | K2 | K1 | Cy | Cx | F | Error | Value | |
---|---|---|---|---|---|---|---|---|---|---|
0.04 | −0.14 | 0.17 | −0.22 | 0.13 | −0.2 | −0.07 | 1 | 4.2 | 2433.9 | F |
−0.1 | 0.6 | −0.03 | 0.03 | 0.08 | −0.1 | 1 | 0.094 | −36.81 | Cx | |
0.63 | −0.06 | −0.03 | 0.05 | −0.11 | 1 | 0.1 | −21.06 | Cy | ||
−0.17 | 0.1 | 0.47 | −0.54 | 1 | 0.00019 | −0.002 | K1 | |||
0.01 | 0.06 | −0.98 | 1 | 0.00018 | −0.005 | K2 | ||||
0 | −0.07 | 1 | 0.00011 | 0.0018 | K3 | |||||
−0.08 | 1 | 7.10 × 10−6 | −5 × 10−4 | P1 | ||||||
1 | 8.30 × 10−6 | −2 × 10−4 | P2 |
Resulted Formats | Software | Process or Activity | Stage |
---|---|---|---|
- | Equipment preparation | Data acquisition | |
- | Checking the weather–climate context | ||
- | Flight corridor separation | ||
DJI GO 4 | Sensor testing and verification | ||
DJI GO 4 | Camera setup | ||
Pix4Dcapture | Mission route planning | ||
Pix4Dcapture | Actual flyby | ||
Photograms (*.jpg 20MP) (5472/3078) | - | Data downloading | |
Validated photograms (*.jpg 20MP) (5472/3078) | - | Photogram filtering and validation | |
Validated photograms (*.jpg 20MP) (5472/3078) | - | Photogram filtering and validation | Data processing |
*.las; *.laz | Agisoft Metashape | Simple point cloud | |
*.las; *.laz | Agisoft Metashape | Densified point cloud | |
*.las; *.laz | Global Mapper | Classification of points | |
*.tiff; *.jpg | Agisoft Metashape | Creating the orthophoto map | |
*.grd | Global Mapper | Creating the elevation models | |
*.collada; *.dae | Agisoft Metashape | Creating the 3D model (mesh) | |
Areas (m2); Volumes (m3) | Global Mapper | Grid operations | Post-processing and integration in GIS |
Total Error (m) | XY Error (m) | Z-Altitude Error (m) | Y-Latitude Error (m) | X-Longitude Error (m) |
---|---|---|---|---|
1.91775 | 1.2804 | 1.43 | 1.11 | 0.631441 |
Element | Dimension |
---|---|
Total Volume between Surfaces | 196,016.9 m3 |
Total Surface | 64,428.43 m2 |
Cut Volume | 196,000.3 m3 |
Cut 2D Surface | 63,549 m2 |
Fill Volume | 16.59998 m3 |
Fill 2D Surface | 879.43 m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rus, I.; Șerban, G.; Brețcan, P.; Dunea, D.; Sabău, D. Identification of Vegetation Surfaces and Volumes by Height Levels in Reservoir Deltas Using UAS Techniques—Case Study at Gilău Reservoir, Transylvania, Romania. Sustainability 2024, 16, 648. https://doi.org/10.3390/su16020648
Rus I, Șerban G, Brețcan P, Dunea D, Sabău D. Identification of Vegetation Surfaces and Volumes by Height Levels in Reservoir Deltas Using UAS Techniques—Case Study at Gilău Reservoir, Transylvania, Romania. Sustainability. 2024; 16(2):648. https://doi.org/10.3390/su16020648
Chicago/Turabian StyleRus, Ioan, Gheorghe Șerban, Petre Brețcan, Daniel Dunea, and Daniel Sabău. 2024. "Identification of Vegetation Surfaces and Volumes by Height Levels in Reservoir Deltas Using UAS Techniques—Case Study at Gilău Reservoir, Transylvania, Romania" Sustainability 16, no. 2: 648. https://doi.org/10.3390/su16020648
APA StyleRus, I., Șerban, G., Brețcan, P., Dunea, D., & Sabău, D. (2024). Identification of Vegetation Surfaces and Volumes by Height Levels in Reservoir Deltas Using UAS Techniques—Case Study at Gilău Reservoir, Transylvania, Romania. Sustainability, 16(2), 648. https://doi.org/10.3390/su16020648