Development of an Integrated Model for Open-Pit-Mine Discontinuous Haulage System Optimization
<p>Mining transportation management system algorithm.</p> "> Figure 2
<p>Triangular fuzzy numbers.</p> "> Figure 3
<p>Geographical map of the study area.</p> "> Figure 4
<p>General geological cross-section of the Ugljevik East 1 deposit.</p> "> Figure 5
<p>Current coal-mining technology at Ugljevik East 1.</p> "> Figure 6
<p>Current waste-mining technology at Ugljevik East 1.</p> "> Figure 7
<p>Total integral values of the moderate, pessimistic, and optimistic expert’s risk assessments.</p> ">
Abstract
:1. Introduction
2. Methodology
3. Case Study
- Excavation, haulage, crushing, and deposition of the coal at the TPP;
- Excavation, haulage, and disposal of the waste rock.
4. Results and Discussion
- -
- Alternative 1 (A1): Belaz 75581 (payload capacity 90 t);
- -
- Alternative 2 (A2): Belaz 75145 (110 t);
- -
- Alternative 3 (A3): Belaz 75135 (136 t);
- -
- Alternative 4 (A4): Belaz 7517 (160 t).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ericsson, M.; Löf, O. Mining’s contribution to national economies between 1996 and 2016. Miner. Econ. 2019, 32, 223–250. [Google Scholar] [CrossRef]
- Walser, G. Economic Impact of World Mining (IAEA-CSP—10/P); International Atomic Energy Agency (IAEA): Wien, Austria, 2002. [Google Scholar]
- Kalisz, S.; Kibort, K.; Mioduska, J.; Lieder, M.; Małachowska, A. Waste management in the mining industry of metals ores, coal, oil and natural gas—A review. J. Environ. Manag. 2022, 304, 114239. [Google Scholar] [CrossRef] [PubMed]
- Mateus, A.; Luis, M. Challenges and opportunities for a successful mining industry in the future. Bol. Geol. Min. 2019, 130, 99–121. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Dallas, J.A.; Casanova, S.; Pelech, T.M.; Bournival, G.; Saydam, S.; Canbulat, I. Towards a low-carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Miner. Eng. 2021, 163, 106743. [Google Scholar] [CrossRef]
- Phengsaart, T.; Srichonphaisan, P.; Kertbundit, C.; Soonthornwiphat, N.; Sinthugoot, S.; Phumkokrux, N.; Juntarasakul, O.; Maneeintr, K.; Numprasanthai, A.; Park, I.; et al. Conventional and recent advances in gravity separation technologies for coal cleaning: A systematic and critical review. Heliyon 2023, 9, e13083. [Google Scholar] [CrossRef]
- Julapong, P.; Numprasanthai, A.; Tangwattananukul, L.; Juntarasakul, O.; Srichonphaisarn, P.; Aikawa, K.; Park, I.; Ito, M.; Tabelin, C.B.; Phengsaart, T. Rare Earth Elements Recovery from Primary and Secondary Resources Using Flotation: A Systematic Review. Appl. Sci. 2023, 13, 8364. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Park, I.; Phengsaart, T.; Jeon, S.; Villacorte-Tabelin, M.; Alonzo, D.; Yoo, K.; Ito, M.; Hiroyoshi, N. Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resour. Conserv. Recycl. 2021, 170, 105610. [Google Scholar] [CrossRef]
- Farkaš, B.; Hrastov, A. Multi-Criteria Analysis for the Selection of the Optimal Mining Design Solution—A Case Study on Quarry “Tambura”. Energies 2021, 14, 3200. [Google Scholar] [CrossRef]
- Ooriad, A.F.; Yari, M.; Bagherpour, R.; Khoshouei, M. The development of a novel Model for Mining Method Selection in a Fuzzy Environment; Case study: Tazareh Coal Mine, Semnan Province, Iran. Min. Geol. Pet. Eng. Bull. 2018, 33, 45–53. [Google Scholar] [CrossRef]
- Bajić, S.; Bajić, D.; Gluščević, B.; Vakanjac, V.R. Application of Fuzzy Analytic Hierarchy Process to Underground Mining Method Selection. Symmetry 2020, 12, 192. [Google Scholar] [CrossRef]
- Bazzazi, A.A.; Osanloo, M.; Karimi, B. A new fuzzy multi criteria decision making model for open pit mines equipment selection. Asia-Pac. J. Oper. Res. 2011, 28, 279–300. [Google Scholar] [CrossRef]
- Bascetin, A.; Kesimal, A. The study of a fuzzy set theory for the selection of an optimum coal transportation system from pit to the power plant. Int. J. Surf. Min. Reclam. Environ. 1999, 13, 97–101. [Google Scholar] [CrossRef]
- Bascetin, A. Technical note, An application of the analytic hierarchy process in equipment selection at Orhaneli open pit coal mine. Min. Technol. Trans. Inst. Min. Metall. 2004, 113, 3. [Google Scholar] [CrossRef]
- Komljenovic, D.; Kecojevic, V. Multi-attribute selection method for materials handling equipment. Int. J. Ind. Syst. Eng. 2009, 4, 151–173. [Google Scholar] [CrossRef]
- Bazzazi, A.A.; Osanloo, M.; Karimi, B. Optimal open pit mining equipment selection using fuzzy multiple attribute decision making approach. Arch. Min. Sci. 2009, 54, 301–320. [Google Scholar]
- Urošević, K.; Gligorić, Z.; Miljanović, I.; Beljić, Č.; Gligorić, M. Novel Methods in Multiple Criteria Decision-Making Process (MCRAT and RAPS)—Application in the Mining Industry. Mathematics 2021, 9, 1980. [Google Scholar] [CrossRef]
- Namin, F.S.; Ghasemzadeh, H.; Aghajari, A.M. A comprehensive approach to selecting mine transportation system using AHP and FUZZY-TOPSIS. Decis. Mak. Anal. 2023, 1, 23–39. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Z.; Bi, L.; Wang, L.; Gu, Q. Determination of Truck–Shovel Configuration of Open-Pit Mine: A Simulation Method Based on Mathematical Model. Sustainability 2022, 14, 12338. [Google Scholar] [CrossRef]
- Dindarloo, S.R.; Osanloo, M.; Frimpong, S. A stochastic simulation framework for truck and shovel selection and sizing in open pit mines. J. South. Afr. Inst. Min. Metall. 2015, 115, 209–219. [Google Scholar] [CrossRef]
- Wulandari, V.S.; Herdyanti, M.K.; Hartami, P.N. Technical analysis of shovel working time towards inter-burden production achievement in open-pit coal mine. IOP Conf. Ser. Earth Environ. Sci. 2021, 882, 012055. [Google Scholar] [CrossRef]
- Dey, S.; Mandal, S.K.; Bhar, C. Application of MR and ANN in the prediction of the shovel cycle time, thereby improving the performance of the shovel-dumper operation—A case study. J. South. Afr. Inst. Min. Metall. 2022, 122, 597–606. [Google Scholar] [CrossRef]
- Manyele, S. Investigation of Excavator Performance Factors in an Open-Pit Mine Using Loading Cycle Time. Engineering 2017, 9, 599–624. [Google Scholar] [CrossRef]
- Guo, C.; Wu, J.; Feng, Y.; Wang, X.; Wang, Y. Mining Electric Shovel Working Device Configuration Synthesis and Performance Analysis. Actuators 2023, 12, 317. [Google Scholar] [CrossRef]
- Seervi, V.; Singh, N.; Kishore, N.; Verma, R. Breakdown and Productivity Prediction of Dragline using Machine Learning Algorithms. J. Mines Met. Fuels 2023, 70, 476–483. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Yang, Y.H.; Li, K.M. System simulation for dragline selection in open cast mines. In Proceedings of the Application of Computers and Operations Research in the Mineral Industries, Cape Town, South Africa, 14–16 May 2003; South African Institute of Mining and Metallurgy: Johannesburg, South Africa, 2003; pp. 79–82. Available online: https://www.saimm.co.za/Conferences/Apcom2003/079-Zhang.pdf (accessed on 1 January 2024).
- Zhou, W.; Cai, Q.; Chen, S. Study on Dragline-Bulldozer Operation with Variations in Coal Seam Thickness. J. China Univ. Min. Technol. 2007, 17, 464–466. [Google Scholar] [CrossRef]
- Mei, X.R. Equipment Selection Optimization System of Draglines and it’s Applications in Opencast Coalmine in China. Adv. Mater. Res. 2011, 201, 1253–1257. [Google Scholar] [CrossRef]
- Seervi, V.; Kishore, N.; Verma, A.K. Critical Analysis of Tandem Dragline Performance in Open Cast Coal Miness—A Case Study. J. Inst. Eng. Ser. D 2023, 104, 391–402. [Google Scholar] [CrossRef]
- Mohtasham, M.; Mirzaei-Nasirabad, H.; Alizadeh, B. Optimization of truck-shovel allocation in open-pit mines under uncertainty: A chance-constrained goal programming approach. Min. Technol. 2021, 130, 81–100. [Google Scholar] [CrossRef]
- Krzyzanowska, J. The impact of mixed fleet hauling on mining operations at Venetia mine. J. South. Afr. Inst. Min. Metall. 2007, 107, 215–224. [Google Scholar]
- Kirmanli, C.; Ercelebi, S.G. An expert system for hydraulic excavator and truck selection in surface mining. J. South. Afr. Inst. Min. Metall. 2009, 109, 727–738. [Google Scholar]
- Bodziony, P.; Kasztelewicz, Z.; Sawicki, P. The problem of multiple criteria selection of the surface mining haul trucks. Arch. Min. Sci. 2016, 61, 223–243. [Google Scholar] [CrossRef]
- Rakhmangulov, A.; Burmistrov, K.; Osintsev, N. Multi-Criteria System’s Design Methodology for Selecting Open Pits Dump Trucks. Sustainability 2024, 16, 863. [Google Scholar] [CrossRef]
- Mohtasham, M.; Mirzaei-Nasirabad, H.; Askari-Nasab, H.; Alizadeh, B. Multi-stage optimization framework for the real-time truck decision problem in open-pit mines: A case study on Sungun copper mine. Int. J. Min. Reclam. Environ. 2022, 36, 461–491. [Google Scholar] [CrossRef]
- Choi, Y.; Park, H.D.; Sunwoo, C.; Clarke, K.C. Multi-criteria evaluation and least-cost path analysis for optimal haulage routing of dump trucks in large scale open-pit mines. Int. J. Geogr. Inf. Sci. 2009, 23, 1541–1567. [Google Scholar] [CrossRef]
- Choi, Y.S.; Park, H.D.; Sunwoo, C. Multi-Criteria Evaluation and Least Cost Path Analysis for Optimal Haulage Routing in Open-Pit Mines; Seoul National University: Seoul, Republic of Korea, 2015. [Google Scholar]
- Rahimdel, M.J.; Bagherpour, R. Haulage system selection for open pit mines using fuzzy MCDM and the view on energy saving. Neural Comput. Appl. 2018, 29, 187–199. [Google Scholar] [CrossRef]
- Ercelebi, S.G.; Bascetin, A. Optimization of shovel-truck system for surface mining. J. South. Afr. Inst. Min. Metall. 2009, 109, 433–439. [Google Scholar]
- Xu, H.; Liu, F.; Liao, J.; Liu, T. Research on Selection and Matching of Truck-Shovel in Oversized Open-Pit Mines. Appl. Sci. 2023, 13, 3851. [Google Scholar] [CrossRef]
- Chang, D.-Y. Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 1996, 95, 649–655. [Google Scholar] [CrossRef]
- Deng, H. Multicriteria analysis with fuzzy pair-wise comparison. Int. J. Approx. Reason. 1999, 21, 215–231. [Google Scholar] [CrossRef]
- Bajić, D. Fuzzy Optimization in the Hydrodynamic Analysis for the Purposes of Groundwater Control System Design. Ph.D. Thesis, University of Belgrade, Faculty of Mining and Geology, Beograd, Serbia, 2016; 296p. [Google Scholar]
- Bajić, D.; Polomčić, D.; Ratković, J. Multi-criteria decision analysis for the purposes of groundwater control system design. Water Resour. Manag. 2017, 31, 4759–4784. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Tolga, E.; Demircan, M.; Kahraman, C. Operating system selection using fuzzy replacement analysis and analytic hierarchy process. Int. J. Prod. Econ. 2005, 97, 89–117. [Google Scholar] [CrossRef]
- Chang, D.Y. Extent analysis and synthetic decision. In Optimization Techniques and Applications; World Scientific: Singapore, 1992; Volume 1, 352p. [Google Scholar]
- Liou, T.S.; Wang, M.J.J. Ranking fuzzy numbers with integral value. Fuzzy Sets Syst. 1992, 50, 247–256. [Google Scholar] [CrossRef]
- Kwang, H.C.; Lee, H.J. A method for ranking fuzzy numbers and its application to decision making. IEEE Trans. Fuzzy Syst. 1999, 7, 677–685. [Google Scholar] [CrossRef]
- Dziubak, T.; Wysocki, T.; Dziubak, S. Selection of vehicles for fleet of transport company on the basis of observation of their operational reliability. Eksploat. Niezawodn.—Maint. Reliab. 2021, 23, 184–194. [Google Scholar] [CrossRef]
- Talpac-3D, RPM Global, 2023. Available online: https://rpmglobal.com/product/talpac-3d/ (accessed on 15 January 2024).
- Thompson, R. Mine Haul Road Design and Management Best Practices for Safe and Cost-Efficient Truck Haulage. In Proceedings of the Society for Mining, Metallurgy and Exploration Annual Meeting & Exhibit, Phoenix, AZ, USA, 28 February–3 March 2010; Society for Mining, Metallurgy and Exploration (SME): Littleton, CO, USA, 2010; pp. 1–10. [Google Scholar]
- Alarie, S.; Gamache, M. Overview of Solution Strategies Used in Truck Dispatching Systems for Open Pit Mines. Int. J. Surf. Min. Reclam. Environ. 2002, 16, 59–76. [Google Scholar] [CrossRef]
- Aykul, H.; Yalcın, E.; Ediz, I.G.; Dixon-Hardy, D.W.; Akcakoca, H. Equipment selection for high selective excavation surface coal mining. J. South. Afr. Inst. Min. Metall. 2007, 107, 195–210. [Google Scholar]
- Belaz Tehnical Characteristics of Mining Dump Trucks, 2024. Available online: https://belaz.by/en/products/products-belaz/dumpers/ (accessed on 15 January 2024).
- Lizotte, Y. Economic and Technical Relations Between Open Pit Design and Equipment Selection. Mine Plan. Equip. Sel. 1988, 98, 3–13. [Google Scholar]
Alternative | Payload Capacity (t) | Gross Truck Weight (t) | Body Volume Heaped 2:1 (m3) | Engine Power (kW) | Maximal Speed (km/h) | Truck Width (m) | Turning Radius (m) |
---|---|---|---|---|---|---|---|
A1 | 90 | 164 | 53.3 | 895 | 60 | 5.36 | 11 |
A2 | 110 | 210 | 67 | 1194 | 64 | 6.4 | 13 |
A3 | 136 | 243 | 80 | 1194 | 50 | 6.4 | 13 |
A4 | 160 | 294 | 96.5 | 1492 | 65.6 | 6.9 | 14 |
Alternative | Payload Capacity (t) | Engine Power (kW) | Production per Operating Hour (t/h) | Number of Needed Trucks |
---|---|---|---|---|
A1 | 90 | 895 | 137 | 29 |
A2 | 110 | 1194 | 151 | 27 |
A3 | 136 | 1194 | 172 | 25 |
A4 | 160 | 1492 | 244 | 19 |
Alternative | Payload Capacity (t) | Truck Width (m) | Road Width (m) | Road Cost per 1 m of Length (€/m’) |
---|---|---|---|---|
A1 | 90 | 5.36 | 16.1 | 242 |
A2 | 110 | 6.4 | 19.2 | 288 |
A3 | 136 | 6.4 | 19.2 | 288 |
A4 | 160 | 6.9 | 20.7 | 311 |
Alternative | Payload Capacity (t) | Number of Needed Trucks | Number of Needed Drivers | Labor Cost per Year (EUR/year) |
---|---|---|---|---|
A1 | 90 | 29 | 145 | 3,480,000 |
A2 | 110 | 27 | 135 | 3,240,000 |
A3 | 136 | 25 | 125 | 3,000,000 |
A4 | 160 | 19 | 95 | 2,280,000 |
Alternative | Payload Capacity (t) | Engine Power (kW) | Fuel (EUR/t) | Lube (EUR/t) | Tires (EUR/t) | Total (EUR/t) | Total per Year (EUR/Year) |
---|---|---|---|---|---|---|---|
A1 | 90 | 895 | 0.520 | 0.026 | 0.016 | 0.562 | 12,917,000 |
A2 | 110 | 1194 | 0.661 | 0.033 | 0.020 | 0.714 | 16,420,000 |
A3 | 136 | 1194 | 0.580 | 0.029 | 0.017 | 0.627 | 14,415,000 |
A4 | 160 | 1492 | 0.511 | 0.026 | 0.015 | 0.552 | 12,698,000 |
Alternative | Payload Capacity (t) | Purchase Price per Unit (EUR) | Number of Needed Trucks | Total Truck Capital Cost (EUR) |
---|---|---|---|---|
A1 | 90 | 1,270,000 | 29 | 36,830,000 |
A2 | 110 | 1,400,000 | 27 | 37,800,000 |
A3 | 136 | 1,600,000 | 25 | 40,000,000 |
A4 | 160 | 1,770,000 | 19 | 33,630,000 |
Criterion | K1 | K2 | K3 | K4 | K5 | Values of Weight Coefficients | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K1 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 3 | 4 | 4 | 5 | 6 | 5 | 6 | 7 | 0.215 | 0.348 | 0.550 |
K2 | 0.33 | 0.50 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 5 | 6 | 7 | 0.187 | 0.297 | 0.472 |
K3 | 0.25 | 0.33 | 0.50 | 0.33 | 0.50 | 1 | 1 | 1 | 1 | 3 | 4 | 5 | 4 | 5 | 6 | 0.142 | 0.222 | 0.354 |
K4 | 0.17 | 0.20 | 0.25 | 0.17 | 0.20 | 0.25 | 0.20 | 0.25 | 0.33 | 1 | 1 | 1 | 2 | 3 | 4 | 0.059 | 0.095 | 0.153 |
K5 | 0.14 | 0.17 | 0.20 | 0.14 | 0.17 | 0.20 | 0.17 | 0.20 | 0.25 | 0.25 | 0.33 | 0.50 | 1 | 1 | 1 | 0.028 | 0.038 | 0.056 |
Criterion | A1 | A2 | A3 | A4 | Values of Weight Coefficients | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K1 | |||||||||||||||
A1 | 1 | 1 | 1 | 0.25 | 0.33 | 0.50 | 0.25 | 0.33 | 0.50 | 0.17 | 0.20 | 0.25 | 0.057 | 0.081 | 0.130 |
A2 | 2 | 3 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 0.33 | 0.50 | 1 | 0.148 | 0.241 | 0.404 |
A3 | 2 | 3 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 0.33 | 0.50 | 1 | 0.148 | 0.241 | 0.404 |
A4 | 4 | 5 | 6 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 1 | 1 | 0.239 | 0.437 | 0.750 |
K2 | |||||||||||||||
A1 | 1 | 1 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 | 9 | 0.342 | 0.494 | 0.711 |
A2 | 0.25 | 0.33 | 0.50 | 1 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 0.202 | 0.300 | 0.445 |
A3 | 0.17 | 0.20 | 0.25 | 0.25 | 0.33 | 0.50 | 1 | 1 | 1 | 3 | 4 | 5 | 0.108 | 0.161 | 0.240 |
A4 | 0.11 | 0.13 | 0.14 | 0.14 | 0.17 | 0.20 | 0.20 | 0.25 | 0.33 | 1 | 1 | 1 | 0.035 | 0.045 | 0.059 |
K3 | |||||||||||||||
A1 | 1 | 1 | 1 | 0.20 | 0.25 | 0.33 | 0.17 | 0.20 | 0.25 | 0.13 | 0.14 | 0.17 | 0.037 | 0.048 | 0.064 |
A2 | 3 | 4 | 5 | 1 | 1 | 1 | 0.25 | 0.33 | 0.50 | 0.17 | 0.20 | 0.25 | 0.111 | 0.166 | 0.249 |
A3 | 4 | 5 | 6 | 2 | 3 | 4 | 1 | 1 | 1 | 0.20 | 0.25 | 0.33 | 0.181 | 0.277 | 0.418 |
A4 | 6 | 7 | 8 | 4 | 5 | 6 | 3 | 4 | 5 | 1 | 1 | 1 | 0.352 | 0.509 | 0.738 |
K4 | |||||||||||||||
A1 | 1 | 1 | 1 | 0.14 | 0.17 | 0.20 | 0.20 | 0.25 | 0.33 | 1 | 2 | 3 | 0.061 | 0.108 | 0.180 |
A2 | 5 | 6 | 7 | 1 | 1 | 1 | 3 | 4 | 5 | 5 | 6 | 7 | 0.365 | 0.538 | 0.793 |
A3 | 3 | 4 | 5 | 0.20 | 0.25 | 0.33 | 1 | 1 | 1 | 3 | 4 | 5 | 0.188 | 0.293 | 0.449 |
A4 | 0.33 | 0.50 | 1 | 0.14 | 0.17 | 0.20 | 0.20 | 0.25 | 0.33 | 1 | 1 | 1 | 0.044 | 0.061 | 0.100 |
K5 | |||||||||||||||
A1 | 1 | 1 | 1 | 0.33 | 0.50 | 1 | 0.20 | 0.25 | 0.33 | 3 | 4 | 5 | 0.127 | 0.200 | 0.329 |
A2 | 1 | 2 | 3 | 1 | 1 | 1 | 0.20 | 0.25 | 0.33 | 3 | 4 | 5 | 0.146 | 0.253 | 0.418 |
A3 | 3 | 4 | 5 | 3 | 4 | 5 | 1 | 1 | 1 | 4 | 5 | 6 | 0.309 | 0.488 | 0.762 |
A4 | 0.20 | 0.25 | 0.33 | 0.20 | 0.25 | 0.33 | 0.17 | 0.20 | 0.25 | 1 | 1 | 1 | 0.044 | 0.059 | 0.086 |
Fuzzy Number | Value of Weight Priority Vector | Final Ranking | Sensitivity Analysis | |||||
---|---|---|---|---|---|---|---|---|
L | S | D | α = 0.0 | α = 0.5 | α = 1.0 | |||
A1 | 0.014 | 0.068 | 0.340 | 0.194 | 4 | 0.206 | 0.197 | 0.195 |
A2 | 0.017 | 0.090 | 0.476 | 0.271 | 2 | 0.271 | 0.271 | 0.271 |
A3 | 0.015 | 0.080 | 0.426 | 0.242 | 3 | 0.239 | 0.241 | 0.242 |
A4 | 0.017 | 0.096 | 0.517 | 0.294 | 1 | 0.284 | 0.291 | 0.293 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čelebić, M.; Bajić, D.; Bajić, S.; Banković, M.; Torbica, D.; Milošević, A.; Stevanović, D. Development of an Integrated Model for Open-Pit-Mine Discontinuous Haulage System Optimization. Sustainability 2024, 16, 3156. https://doi.org/10.3390/su16083156
Čelebić M, Bajić D, Bajić S, Banković M, Torbica D, Milošević A, Stevanović D. Development of an Integrated Model for Open-Pit-Mine Discontinuous Haulage System Optimization. Sustainability. 2024; 16(8):3156. https://doi.org/10.3390/su16083156
Chicago/Turabian StyleČelebić, Miodrag, Dragoljub Bajić, Sanja Bajić, Mirjana Banković, Duško Torbica, Aleksej Milošević, and Dejan Stevanović. 2024. "Development of an Integrated Model for Open-Pit-Mine Discontinuous Haulage System Optimization" Sustainability 16, no. 8: 3156. https://doi.org/10.3390/su16083156
APA StyleČelebić, M., Bajić, D., Bajić, S., Banković, M., Torbica, D., Milošević, A., & Stevanović, D. (2024). Development of an Integrated Model for Open-Pit-Mine Discontinuous Haulage System Optimization. Sustainability, 16(8), 3156. https://doi.org/10.3390/su16083156